Malignancy prediction for calcified thyroid nodules using deep learning based on ultrasound dynamic videos Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1186/s40644-025-00944-3
Objective The presence of calcification, especially microcalcification, is often associated with an increased risk of malignancy and closely linked to papillary thyroid carcinoma (PTC), the most common type of thyroid cancer. However, existing diagnostic ultrasound (US) imaging has critical limitations such as inability to detect subtle calcifications via standard static imaging, leading to 15–20% delayed PTC treatment or unnecessary fine-needle aspiration. This study aimed to develop a calcification-optimized, interpretable deep learning (DL) model based on dynamic ultrasound videos to determine the malignancy nature of calcified thyroid nodules. Design and methods This study retrospectively collected ultrasound dynamic video data from 1,257 patients, containing 2,319 thyroid nodules across six hospitals between January 2020 and October 2023. Various DL models were constructed with optimization specifically implemented on the 3D InceptionResNetV2 network by including a calcification attention module to enhance sensitivity to micro-calcifications. Model performance was compared not only with those trained on 2D static ultrasound images, but also against diagnoses from four clinicians (2 junior and 2 senior radiologists). The dataset was split into training (70%, 1,623 videos), validation (10%, 232 videos), internal test (10%, 232 videos), and external test (10%, 232 videos) sets. Results On the external test set, the optimized 3D InceptionResNetV2 model trained with dynamic videos outperformed the other four 3D DL models across all metrics: AUROC of 0.916, sensitivity of 0.860, and specificity of 0.834. Its AUROC was significantly higher than that of radiologists (0.916 versus 0.638; p < 0.0001). Additionally, with the assistance of the optimized model, radiologists’ diagnostic accuracy improved by 16.9% (junior) and 11.1% (senior) in the external cohort. 3D Grad-CAM further confirmed the model focused on calcified regions (consistent with clinical diagnostic logic) by generating interpretable heatmaps. Conclusion A calcification-optimized DL model trained on dynamic ultrasound videos was proposed to efficiently and accurately predict the benign/malignant nature of calcified nodules. This tool shows promises as a non-invasive, interpretable tool for early PTC detection, supporting timely diagnosis and treatment planning.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1186/s40644-025-00944-3
- https://cancerimagingjournal.biomedcentral.com/counter/pdf/10.1186/s40644-025-00944-3
- OA Status
- gold
- References
- 35
- OpenAlex ID
- https://openalex.org/W4416092141
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4416092141Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1186/s40644-025-00944-3Digital Object Identifier
- Title
-
Malignancy prediction for calcified thyroid nodules using deep learning based on ultrasound dynamic videosWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-11-10Full publication date if available
- Authors
-
Tingting Qian, Yahan Zhou, Sohaib Asif, Yang Zhang, Ni Chen, Yin Zheng, J. Huang, Hongyu Shen, Renyi Zhu, Vicky Yang Wang, Dong XuList of authors in order
- Landing page
-
https://doi.org/10.1186/s40644-025-00944-3Publisher landing page
- PDF URL
-
https://cancerimagingjournal.biomedcentral.com/counter/pdf/10.1186/s40644-025-00944-3Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://cancerimagingjournal.biomedcentral.com/counter/pdf/10.1186/s40644-025-00944-3Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
35Number of works referenced by this work
Full payload
| id | https://openalex.org/W4416092141 |
|---|---|
| doi | https://doi.org/10.1186/s40644-025-00944-3 |
| ids.doi | https://doi.org/10.1186/s40644-025-00944-3 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/41214809 |
| ids.openalex | https://openalex.org/W4416092141 |
| fwci | |
| mesh[0].qualifier_ui | |
| mesh[0].descriptor_ui | D006801 |
| mesh[0].is_major_topic | False |
| mesh[0].qualifier_name | |
| mesh[0].descriptor_name | Humans |
| mesh[1].qualifier_ui | |
| mesh[1].descriptor_ui | D000077321 |
| mesh[1].is_major_topic | True |
| mesh[1].qualifier_name | |
| mesh[1].descriptor_name | Deep Learning |
| mesh[2].qualifier_ui | Q000000981 |
| mesh[2].descriptor_ui | D016606 |
| mesh[2].is_major_topic | True |
| mesh[2].qualifier_name | diagnostic imaging |
| mesh[2].descriptor_name | Thyroid Nodule |
| mesh[3].qualifier_ui | Q000473 |
| mesh[3].descriptor_ui | D016606 |
| mesh[3].is_major_topic | True |
| mesh[3].qualifier_name | pathology |
| mesh[3].descriptor_name | Thyroid Nodule |
| mesh[4].qualifier_ui | Q000000981 |
| mesh[4].descriptor_ui | D002114 |
| mesh[4].is_major_topic | True |
| mesh[4].qualifier_name | diagnostic imaging |
| mesh[4].descriptor_name | Calcinosis |
| mesh[5].qualifier_ui | Q000473 |
| mesh[5].descriptor_ui | D002114 |
| mesh[5].is_major_topic | True |
| mesh[5].qualifier_name | pathology |
| mesh[5].descriptor_name | Calcinosis |
| mesh[6].qualifier_ui | |
| mesh[6].descriptor_ui | D012189 |
| mesh[6].is_major_topic | False |
| mesh[6].qualifier_name | |
| mesh[6].descriptor_name | Retrospective Studies |
| mesh[7].qualifier_ui | Q000379 |
| mesh[7].descriptor_ui | D014463 |
| mesh[7].is_major_topic | False |
| mesh[7].qualifier_name | methods |
| mesh[7].descriptor_name | Ultrasonography |
| mesh[8].qualifier_ui | |
| mesh[8].descriptor_ui | D005260 |
| mesh[8].is_major_topic | False |
| mesh[8].qualifier_name | |
| mesh[8].descriptor_name | Female |
| mesh[9].qualifier_ui | |
| mesh[9].descriptor_ui | D008297 |
| mesh[9].is_major_topic | False |
| mesh[9].qualifier_name | |
| mesh[9].descriptor_name | Male |
| mesh[10].qualifier_ui | |
| mesh[10].descriptor_ui | D008875 |
| mesh[10].is_major_topic | False |
| mesh[10].qualifier_name | |
| mesh[10].descriptor_name | Middle Aged |
| mesh[11].qualifier_ui | Q000000981 |
| mesh[11].descriptor_ui | D013964 |
| mesh[11].is_major_topic | True |
| mesh[11].qualifier_name | diagnostic imaging |
| mesh[11].descriptor_name | Thyroid Neoplasms |
| mesh[12].qualifier_ui | Q000473 |
| mesh[12].descriptor_ui | D013964 |
| mesh[12].is_major_topic | True |
| mesh[12].qualifier_name | pathology |
| mesh[12].descriptor_name | Thyroid Neoplasms |
| mesh[13].qualifier_ui | |
| mesh[13].descriptor_ui | D000328 |
| mesh[13].is_major_topic | False |
| mesh[13].qualifier_name | |
| mesh[13].descriptor_name | Adult |
| mesh[14].qualifier_ui | |
| mesh[14].descriptor_ui | D000368 |
| mesh[14].is_major_topic | False |
| mesh[14].qualifier_name | |
| mesh[14].descriptor_name | Aged |
| mesh[15].qualifier_ui | Q000000981 |
| mesh[15].descriptor_ui | D000077273 |
| mesh[15].is_major_topic | True |
| mesh[15].qualifier_name | diagnostic imaging |
| mesh[15].descriptor_name | Thyroid Cancer, Papillary |
| mesh[16].qualifier_ui | Q000473 |
| mesh[16].descriptor_ui | D000077273 |
| mesh[16].is_major_topic | True |
| mesh[16].qualifier_name | pathology |
| mesh[16].descriptor_name | Thyroid Cancer, Papillary |
| type | article |
| title | Malignancy prediction for calcified thyroid nodules using deep learning based on ultrasound dynamic videos |
| biblio.issue | 1 |
| biblio.volume | 25 |
| biblio.last_page | 128 |
| biblio.first_page | 128 |
| is_xpac | False |
| apc_list.value | 1690 |
| apc_list.currency | GBP |
| apc_list.value_usd | 2072 |
| apc_paid.value | 1690 |
| apc_paid.currency | GBP |
| apc_paid.value_usd | 2072 |
| language | en |
| locations[0].id | doi:10.1186/s40644-025-00944-3 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S14818408 |
| locations[0].source.issn | 1470-7330, 1740-5025 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1470-7330 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Cancer Imaging |
| locations[0].source.host_organization | https://openalex.org/P4310320256 |
| locations[0].source.host_organization_name | BioMed Central |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320256, https://openalex.org/P4310319965 |
| locations[0].source.host_organization_lineage_names | BioMed Central, Springer Nature |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://cancerimagingjournal.biomedcentral.com/counter/pdf/10.1186/s40644-025-00944-3 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Cancer Imaging |
| locations[0].landing_page_url | https://doi.org/10.1186/s40644-025-00944-3 |
| locations[1].id | pmid:41214809 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Cancer imaging : the official publication of the International Cancer Imaging Society |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/41214809 |
| locations[2].id | pmh:oai:doaj.org/article:473f7cd3565b4223935edf30dfa8ad55 |
| locations[2].is_oa | False |
| locations[2].source.id | https://openalex.org/S4306401280 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[2].source.host_organization | |
| locations[2].source.host_organization_name | |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | article |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Cancer Imaging, Vol 25, Iss 1, Pp 1-15 (2025) |
| locations[2].landing_page_url | https://doaj.org/article/473f7cd3565b4223935edf30dfa8ad55 |
| locations[3].id | pmh:oai:europepmc.org:11412712 |
| locations[3].is_oa | True |
| locations[3].source.id | https://openalex.org/S4306400806 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | False |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | Europe PMC (PubMed Central) |
| locations[3].source.host_organization | https://openalex.org/I1303153112 |
| locations[3].source.host_organization_name | European Bioinformatics Institute |
| locations[3].source.host_organization_lineage | https://openalex.org/I1303153112 |
| locations[3].license | other-oa |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | Text |
| locations[3].license_id | https://openalex.org/licenses/other-oa |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | |
| locations[3].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/12604403 |
| indexed_in | crossref, doaj, pubmed |
| authorships[0].author.id | https://openalex.org/A5024447767 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-9015-9637 |
| authorships[0].author.display_name | Tingting Qian |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I19820366, https://openalex.org/I4210098734 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Diagnostic Ultrasound Imaging & Interventional Therapy, Hangzhou Institute of Medicine (HIM), Zhejiang Cancer Hospital, Chinese Academy of Sciences, Hangzhou, 310022, China |
| authorships[0].institutions[0].id | https://openalex.org/I19820366 |
| authorships[0].institutions[0].ror | https://ror.org/034t30j35 |
| authorships[0].institutions[0].type | government |
| authorships[0].institutions[0].lineage | https://openalex.org/I19820366 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Chinese Academy of Sciences |
| authorships[0].institutions[1].id | https://openalex.org/I4210098734 |
| authorships[0].institutions[1].ror | https://ror.org/0144s0951 |
| authorships[0].institutions[1].type | healthcare |
| authorships[0].institutions[1].lineage | https://openalex.org/I4210098734 |
| authorships[0].institutions[1].country_code | CN |
| authorships[0].institutions[1].display_name | Zhejiang Cancer Hospital |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Tingting Qian |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Diagnostic Ultrasound Imaging & Interventional Therapy, Hangzhou Institute of Medicine (HIM), Zhejiang Cancer Hospital, Chinese Academy of Sciences, Hangzhou, 310022, China |
| authorships[1].author.id | https://openalex.org/A5102652830 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Yahan Zhou |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I19820366, https://openalex.org/I4210098734 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Diagnostic Ultrasound Imaging & Interventional Therapy, Hangzhou Institute of Medicine (HIM), Zhejiang Cancer Hospital, Chinese Academy of Sciences, Hangzhou, 310022, China |
| authorships[1].institutions[0].id | https://openalex.org/I19820366 |
| authorships[1].institutions[0].ror | https://ror.org/034t30j35 |
| authorships[1].institutions[0].type | government |
| authorships[1].institutions[0].lineage | https://openalex.org/I19820366 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Chinese Academy of Sciences |
| authorships[1].institutions[1].id | https://openalex.org/I4210098734 |
| authorships[1].institutions[1].ror | https://ror.org/0144s0951 |
| authorships[1].institutions[1].type | healthcare |
| authorships[1].institutions[1].lineage | https://openalex.org/I4210098734 |
| authorships[1].institutions[1].country_code | CN |
| authorships[1].institutions[1].display_name | Zhejiang Cancer Hospital |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Yahan Zhou |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Diagnostic Ultrasound Imaging & Interventional Therapy, Hangzhou Institute of Medicine (HIM), Zhejiang Cancer Hospital, Chinese Academy of Sciences, Hangzhou, 310022, China |
| authorships[2].author.id | https://openalex.org/A5065346101 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Sohaib Asif |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I4210098734 |
| authorships[2].affiliations[0].raw_affiliation_string | Taizhou Key Laboratory of Minimally Invasive Interventional Therapy & Artificial Intelligence, Taizhou Branch of Zhejiang Cancer Hospital (Taizhou Cancer Hospital), Taizhou, Zhejiang, 317502, China |
| authorships[2].institutions[0].id | https://openalex.org/I4210098734 |
| authorships[2].institutions[0].ror | https://ror.org/0144s0951 |
| authorships[2].institutions[0].type | healthcare |
| authorships[2].institutions[0].lineage | https://openalex.org/I4210098734 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Zhejiang Cancer Hospital |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Sohaib Asif |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Taizhou Key Laboratory of Minimally Invasive Interventional Therapy & Artificial Intelligence, Taizhou Branch of Zhejiang Cancer Hospital (Taizhou Cancer Hospital), Taizhou, Zhejiang, 317502, China |
| authorships[3].author.id | https://openalex.org/A5115596907 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-3588-4702 |
| authorships[3].author.display_name | Yang Zhang |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I19820366, https://openalex.org/I4210098734 |
| authorships[3].affiliations[0].raw_affiliation_string | Department of Diagnostic Ultrasound Imaging & Interventional Therapy, Hangzhou Institute of Medicine (HIM), Zhejiang Cancer Hospital, Chinese Academy of Sciences, Hangzhou, 310022, China |
| authorships[3].institutions[0].id | https://openalex.org/I19820366 |
| authorships[3].institutions[0].ror | https://ror.org/034t30j35 |
| authorships[3].institutions[0].type | government |
| authorships[3].institutions[0].lineage | https://openalex.org/I19820366 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Chinese Academy of Sciences |
| authorships[3].institutions[1].id | https://openalex.org/I4210098734 |
| authorships[3].institutions[1].ror | https://ror.org/0144s0951 |
| authorships[3].institutions[1].type | healthcare |
| authorships[3].institutions[1].lineage | https://openalex.org/I4210098734 |
| authorships[3].institutions[1].country_code | CN |
| authorships[3].institutions[1].display_name | Zhejiang Cancer Hospital |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Yang Zhang |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Department of Diagnostic Ultrasound Imaging & Interventional Therapy, Hangzhou Institute of Medicine (HIM), Zhejiang Cancer Hospital, Chinese Academy of Sciences, Hangzhou, 310022, China |
| authorships[4].author.id | https://openalex.org/A5039694067 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-0663-3867 |
| authorships[4].author.display_name | Ni Chen |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I4210139110 |
| authorships[4].affiliations[0].raw_affiliation_string | Department of Ultrasound, Hangzhou Traditional Chinese Medicine Hospital, Hangzhou, 310000, China |
| authorships[4].institutions[0].id | https://openalex.org/I4210139110 |
| authorships[4].institutions[0].ror | https://ror.org/03a8g0p38 |
| authorships[4].institutions[0].type | healthcare |
| authorships[4].institutions[0].lineage | https://openalex.org/I4210139110 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | Hangzhou Hospital of Traditional Chinese Medicine |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Chen Ni |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Department of Ultrasound, Hangzhou Traditional Chinese Medicine Hospital, Hangzhou, 310000, China |
| authorships[5].author.id | https://openalex.org/A5101044166 |
| authorships[5].author.orcid | |
| authorships[5].author.display_name | Yin Zheng |
| authorships[5].countries | CN |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I19820366, https://openalex.org/I4210098734 |
| authorships[5].affiliations[0].raw_affiliation_string | Department of Diagnostic Ultrasound Imaging & Interventional Therapy, Hangzhou Institute of Medicine (HIM), Zhejiang Cancer Hospital, Chinese Academy of Sciences, Hangzhou, 310022, China |
| authorships[5].affiliations[1].institution_ids | https://openalex.org/I114539943 |
| authorships[5].affiliations[1].raw_affiliation_string | Graduate School, The Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, 310014, China |
| authorships[5].institutions[0].id | https://openalex.org/I19820366 |
| authorships[5].institutions[0].ror | https://ror.org/034t30j35 |
| authorships[5].institutions[0].type | government |
| authorships[5].institutions[0].lineage | https://openalex.org/I19820366 |
| authorships[5].institutions[0].country_code | CN |
| authorships[5].institutions[0].display_name | Chinese Academy of Sciences |
| authorships[5].institutions[1].id | https://openalex.org/I4210098734 |
| authorships[5].institutions[1].ror | https://ror.org/0144s0951 |
| authorships[5].institutions[1].type | healthcare |
| authorships[5].institutions[1].lineage | https://openalex.org/I4210098734 |
| authorships[5].institutions[1].country_code | CN |
| authorships[5].institutions[1].display_name | Zhejiang Cancer Hospital |
| authorships[5].institutions[2].id | https://openalex.org/I114539943 |
| authorships[5].institutions[2].ror | https://ror.org/04epb4p87 |
| authorships[5].institutions[2].type | education |
| authorships[5].institutions[2].lineage | https://openalex.org/I114539943 |
| authorships[5].institutions[2].country_code | CN |
| authorships[5].institutions[2].display_name | Zhejiang Chinese Medical University |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Yin Zheng |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Department of Diagnostic Ultrasound Imaging & Interventional Therapy, Hangzhou Institute of Medicine (HIM), Zhejiang Cancer Hospital, Chinese Academy of Sciences, Hangzhou, 310022, China, Graduate School, The Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, 310014, China |
| authorships[6].author.id | https://openalex.org/A5016131202 |
| authorships[6].author.orcid | https://orcid.org/0000-0001-8680-8323 |
| authorships[6].author.display_name | J. Huang |
| authorships[6].countries | CN |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I19820366, https://openalex.org/I4210098734 |
| authorships[6].affiliations[0].raw_affiliation_string | Department of Diagnostic Ultrasound Imaging & Interventional Therapy, Hangzhou Institute of Medicine (HIM), Zhejiang Cancer Hospital, Chinese Academy of Sciences, Hangzhou, 310022, China |
| authorships[6].institutions[0].id | https://openalex.org/I19820366 |
| authorships[6].institutions[0].ror | https://ror.org/034t30j35 |
| authorships[6].institutions[0].type | government |
| authorships[6].institutions[0].lineage | https://openalex.org/I19820366 |
| authorships[6].institutions[0].country_code | CN |
| authorships[6].institutions[0].display_name | Chinese Academy of Sciences |
| authorships[6].institutions[1].id | https://openalex.org/I4210098734 |
| authorships[6].institutions[1].ror | https://ror.org/0144s0951 |
| authorships[6].institutions[1].type | healthcare |
| authorships[6].institutions[1].lineage | https://openalex.org/I4210098734 |
| authorships[6].institutions[1].country_code | CN |
| authorships[6].institutions[1].display_name | Zhejiang Cancer Hospital |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Jiaheng Huang |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | Department of Diagnostic Ultrasound Imaging & Interventional Therapy, Hangzhou Institute of Medicine (HIM), Zhejiang Cancer Hospital, Chinese Academy of Sciences, Hangzhou, 310022, China |
| authorships[7].author.id | https://openalex.org/A5048495389 |
| authorships[7].author.orcid | https://orcid.org/0000-0002-2146-9997 |
| authorships[7].author.display_name | Hongyu Shen |
| authorships[7].countries | CN |
| authorships[7].affiliations[0].institution_ids | https://openalex.org/I4210131061, https://openalex.org/I4210165441 |
| authorships[7].affiliations[0].raw_affiliation_string | XianJu People's Hospital, Zhejiang Southeast Campus of Zhejiang Provincial People's Hospital, Affiliated Xianju's Hospital, Hangzhou Medical College, Xianju, Zhejiang, China |
| authorships[7].institutions[0].id | https://openalex.org/I4210165441 |
| authorships[7].institutions[0].ror | https://ror.org/05gpas306 |
| authorships[7].institutions[0].type | education |
| authorships[7].institutions[0].lineage | https://openalex.org/I4210165441 |
| authorships[7].institutions[0].country_code | CN |
| authorships[7].institutions[0].display_name | Hangzhou Medical College |
| authorships[7].institutions[1].id | https://openalex.org/I4210131061 |
| authorships[7].institutions[1].ror | https://ror.org/03k14e164 |
| authorships[7].institutions[1].type | healthcare |
| authorships[7].institutions[1].lineage | https://openalex.org/I4210131061 |
| authorships[7].institutions[1].country_code | CN |
| authorships[7].institutions[1].display_name | Zhejiang Provincial People's Hospital |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | Haoneng Shen |
| authorships[7].is_corresponding | False |
| authorships[7].raw_affiliation_strings | XianJu People's Hospital, Zhejiang Southeast Campus of Zhejiang Provincial People's Hospital, Affiliated Xianju's Hospital, Hangzhou Medical College, Xianju, Zhejiang, China |
| authorships[8].author.id | https://openalex.org/A5102423171 |
| authorships[8].author.orcid | |
| authorships[8].author.display_name | Renyi Zhu |
| authorships[8].affiliations[0].raw_affiliation_string | Tongxiang First People's Hospital, Jiao Chang Road 1918, Tongxiang, Zhejiang, 314500, China |
| authorships[8].author_position | middle |
| authorships[8].raw_author_name | Renyi Zhu |
| authorships[8].is_corresponding | False |
| authorships[8].raw_affiliation_strings | Tongxiang First People's Hospital, Jiao Chang Road 1918, Tongxiang, Zhejiang, 314500, China |
| authorships[9].author.id | https://openalex.org/A5016940552 |
| authorships[9].author.orcid | |
| authorships[9].author.display_name | Vicky Yang Wang |
| authorships[9].countries | CN |
| authorships[9].affiliations[0].institution_ids | https://openalex.org/I19820366 |
| authorships[9].affiliations[0].raw_affiliation_string | Center of Intelligent Diagnosis and Therapy (Taizhou), Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Taizhou, Zhejiang, 317502, China |
| authorships[9].institutions[0].id | https://openalex.org/I19820366 |
| authorships[9].institutions[0].ror | https://ror.org/034t30j35 |
| authorships[9].institutions[0].type | government |
| authorships[9].institutions[0].lineage | https://openalex.org/I19820366 |
| authorships[9].institutions[0].country_code | CN |
| authorships[9].institutions[0].display_name | Chinese Academy of Sciences |
| authorships[9].author_position | middle |
| authorships[9].raw_author_name | Vicky Yang Wang |
| authorships[9].is_corresponding | False |
| authorships[9].raw_affiliation_strings | Center of Intelligent Diagnosis and Therapy (Taizhou), Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Taizhou, Zhejiang, 317502, China |
| authorships[10].author.id | https://openalex.org/A5073142860 |
| authorships[10].author.orcid | https://orcid.org/0000-0002-5202-4309 |
| authorships[10].author.display_name | Dong Xu |
| authorships[10].countries | CN |
| authorships[10].affiliations[0].institution_ids | https://openalex.org/I27781120 |
| authorships[10].affiliations[0].raw_affiliation_string | Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China |
| authorships[10].institutions[0].id | https://openalex.org/I27781120 |
| authorships[10].institutions[0].ror | https://ror.org/00rd5t069 |
| authorships[10].institutions[0].type | education |
| authorships[10].institutions[0].lineage | https://openalex.org/I27781120 |
| authorships[10].institutions[0].country_code | CN |
| authorships[10].institutions[0].display_name | Wenzhou Medical University |
| authorships[10].author_position | last |
| authorships[10].raw_author_name | Dong Xu |
| authorships[10].is_corresponding | True |
| authorships[10].raw_affiliation_strings | Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://cancerimagingjournal.biomedcentral.com/counter/pdf/10.1186/s40644-025-00944-3 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-11-10T00:00:00 |
| display_name | Malignancy prediction for calcified thyroid nodules using deep learning based on ultrasound dynamic videos |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-28T09:17:03.036368 |
| primary_topic | |
| cited_by_count | 0 |
| locations_count | 4 |
| best_oa_location.id | doi:10.1186/s40644-025-00944-3 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S14818408 |
| best_oa_location.source.issn | 1470-7330, 1740-5025 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1470-7330 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Cancer Imaging |
| best_oa_location.source.host_organization | https://openalex.org/P4310320256 |
| best_oa_location.source.host_organization_name | BioMed Central |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320256, https://openalex.org/P4310319965 |
| best_oa_location.source.host_organization_lineage_names | BioMed Central, Springer Nature |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://cancerimagingjournal.biomedcentral.com/counter/pdf/10.1186/s40644-025-00944-3 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Cancer Imaging |
| best_oa_location.landing_page_url | https://doi.org/10.1186/s40644-025-00944-3 |
| primary_location.id | doi:10.1186/s40644-025-00944-3 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S14818408 |
| primary_location.source.issn | 1470-7330, 1740-5025 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1470-7330 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Cancer Imaging |
| primary_location.source.host_organization | https://openalex.org/P4310320256 |
| primary_location.source.host_organization_name | BioMed Central |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320256, https://openalex.org/P4310319965 |
| primary_location.source.host_organization_lineage_names | BioMed Central, Springer Nature |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://cancerimagingjournal.biomedcentral.com/counter/pdf/10.1186/s40644-025-00944-3 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Cancer Imaging |
| primary_location.landing_page_url | https://doi.org/10.1186/s40644-025-00944-3 |
| publication_date | 2025-11-10 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W4283320467, https://openalex.org/W2961379322, https://openalex.org/W2069164992, https://openalex.org/W2284461642, https://openalex.org/W2145150141, https://openalex.org/W2978990381, https://openalex.org/W4388946734, https://openalex.org/W4393226092, https://openalex.org/W4301182758, https://openalex.org/W4390033404, https://openalex.org/W2091586716, https://openalex.org/W4402961059, https://openalex.org/W2050159969, https://openalex.org/W4224285284, https://openalex.org/W3005273854, https://openalex.org/W4399395322, https://openalex.org/W4291824840, https://openalex.org/W3063201144, https://openalex.org/W3086749074, https://openalex.org/W2592929672, https://openalex.org/W4281391992, https://openalex.org/W4394816096, https://openalex.org/W4404473526, https://openalex.org/W3117821338, https://openalex.org/W4407029343, https://openalex.org/W3024740627, https://openalex.org/W4400406156, https://openalex.org/W3128102181, https://openalex.org/W4387219762, https://openalex.org/W3183601469, https://openalex.org/W4300939921, https://openalex.org/W2531409750, https://openalex.org/W4300473403, https://openalex.org/W2963446712, https://openalex.org/W2194775991 |
| referenced_works_count | 35 |
| abstract_inverted_index.2 | 164 |
| abstract_inverted_index.A | 284 |
| abstract_inverted_index.a | 67, 131, 311 |
| abstract_inverted_index.p | 239 |
| abstract_inverted_index.(2 | 161 |
| abstract_inverted_index.2D | 150 |
| abstract_inverted_index.3D | 126, 200, 211, 264 |
| abstract_inverted_index.DL | 116, 212, 286 |
| abstract_inverted_index.On | 193 |
| abstract_inverted_index.an | 12 |
| abstract_inverted_index.as | 42, 310 |
| abstract_inverted_index.by | 129, 254, 279 |
| abstract_inverted_index.in | 260 |
| abstract_inverted_index.is | 8 |
| abstract_inverted_index.of | 4, 15, 29, 84, 218, 221, 225, 234, 246, 303 |
| abstract_inverted_index.on | 75, 124, 149, 271, 289 |
| abstract_inverted_index.or | 58 |
| abstract_inverted_index.to | 20, 44, 53, 65, 79, 135, 138, 295 |
| abstract_inverted_index.232 | 178, 183, 189 |
| abstract_inverted_index.Its | 227 |
| abstract_inverted_index.PTC | 56, 317 |
| abstract_inverted_index.The | 2, 167 |
| abstract_inverted_index.all | 215 |
| abstract_inverted_index.and | 17, 89, 112, 163, 185, 223, 257, 297, 322 |
| abstract_inverted_index.but | 154 |
| abstract_inverted_index.for | 315 |
| abstract_inverted_index.has | 38 |
| abstract_inverted_index.not | 144 |
| abstract_inverted_index.six | 107 |
| abstract_inverted_index.the | 25, 81, 125, 194, 198, 208, 244, 247, 261, 268, 300 |
| abstract_inverted_index.via | 48 |
| abstract_inverted_index.was | 142, 169, 229, 293 |
| abstract_inverted_index.< | 240 |
| abstract_inverted_index.(DL) | 72 |
| abstract_inverted_index.(US) | 36 |
| abstract_inverted_index.2020 | 111 |
| abstract_inverted_index.This | 62, 91, 306 |
| abstract_inverted_index.also | 155 |
| abstract_inverted_index.data | 98 |
| abstract_inverted_index.deep | 70 |
| abstract_inverted_index.four | 159, 210 |
| abstract_inverted_index.from | 99, 158 |
| abstract_inverted_index.into | 171 |
| abstract_inverted_index.most | 26 |
| abstract_inverted_index.only | 145 |
| abstract_inverted_index.risk | 14 |
| abstract_inverted_index.set, | 197 |
| abstract_inverted_index.such | 41 |
| abstract_inverted_index.test | 181, 187, 196 |
| abstract_inverted_index.than | 232 |
| abstract_inverted_index.that | 233 |
| abstract_inverted_index.tool | 307, 314 |
| abstract_inverted_index.type | 28 |
| abstract_inverted_index.were | 118 |
| abstract_inverted_index.with | 11, 120, 146, 204, 243, 275 |
| abstract_inverted_index.(10%, | 177, 182, 188 |
| abstract_inverted_index.(70%, | 173 |
| abstract_inverted_index.1,257 | 100 |
| abstract_inverted_index.1,623 | 174 |
| abstract_inverted_index.11.1% | 258 |
| abstract_inverted_index.16.9% | 255 |
| abstract_inverted_index.2,319 | 103 |
| abstract_inverted_index.2023. | 114 |
| abstract_inverted_index.AUROC | 217, 228 |
| abstract_inverted_index.Model | 140 |
| abstract_inverted_index.aimed | 64 |
| abstract_inverted_index.based | 74 |
| abstract_inverted_index.early | 316 |
| abstract_inverted_index.model | 73, 202, 269, 287 |
| abstract_inverted_index.often | 9 |
| abstract_inverted_index.other | 209 |
| abstract_inverted_index.sets. | 191 |
| abstract_inverted_index.shows | 308 |
| abstract_inverted_index.split | 170 |
| abstract_inverted_index.study | 63, 92 |
| abstract_inverted_index.those | 147 |
| abstract_inverted_index.video | 97 |
| abstract_inverted_index.(0.916 | 236 |
| abstract_inverted_index.(PTC), | 24 |
| abstract_inverted_index.0.638; | 238 |
| abstract_inverted_index.0.834. | 226 |
| abstract_inverted_index.0.860, | 222 |
| abstract_inverted_index.0.916, | 219 |
| abstract_inverted_index.Design | 88 |
| abstract_inverted_index.across | 106, 214 |
| abstract_inverted_index.common | 27 |
| abstract_inverted_index.detect | 45 |
| abstract_inverted_index.higher | 231 |
| abstract_inverted_index.junior | 162 |
| abstract_inverted_index.linked | 19 |
| abstract_inverted_index.logic) | 278 |
| abstract_inverted_index.model, | 249 |
| abstract_inverted_index.models | 117, 213 |
| abstract_inverted_index.module | 134 |
| abstract_inverted_index.nature | 83, 302 |
| abstract_inverted_index.senior | 165 |
| abstract_inverted_index.static | 50, 151 |
| abstract_inverted_index.subtle | 46 |
| abstract_inverted_index.timely | 320 |
| abstract_inverted_index.versus | 237 |
| abstract_inverted_index.videos | 78, 206, 292 |
| abstract_inverted_index.January | 110 |
| abstract_inverted_index.October | 113 |
| abstract_inverted_index.Results | 192 |
| abstract_inverted_index.Various | 115 |
| abstract_inverted_index.against | 156 |
| abstract_inverted_index.between | 109 |
| abstract_inverted_index.cancer. | 31 |
| abstract_inverted_index.closely | 18 |
| abstract_inverted_index.cohort. | 263 |
| abstract_inverted_index.dataset | 168 |
| abstract_inverted_index.delayed | 55 |
| abstract_inverted_index.develop | 66 |
| abstract_inverted_index.dynamic | 76, 96, 205, 290 |
| abstract_inverted_index.enhance | 136 |
| abstract_inverted_index.focused | 270 |
| abstract_inverted_index.further | 266 |
| abstract_inverted_index.images, | 153 |
| abstract_inverted_index.imaging | 37 |
| abstract_inverted_index.leading | 52 |
| abstract_inverted_index.methods | 90 |
| abstract_inverted_index.network | 128 |
| abstract_inverted_index.nodules | 105 |
| abstract_inverted_index.predict | 299 |
| abstract_inverted_index.regions | 273 |
| abstract_inverted_index.thyroid | 22, 30, 86, 104 |
| abstract_inverted_index.trained | 148, 203, 288 |
| abstract_inverted_index.videos) | 190 |
| abstract_inverted_index.(junior) | 256 |
| abstract_inverted_index.(senior) | 259 |
| abstract_inverted_index.0.0001). | 241 |
| abstract_inverted_index.15–20% | 54 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.Grad-CAM | 265 |
| abstract_inverted_index.However, | 32 |
| abstract_inverted_index.accuracy | 252 |
| abstract_inverted_index.clinical | 276 |
| abstract_inverted_index.compared | 143 |
| abstract_inverted_index.critical | 39 |
| abstract_inverted_index.existing | 33 |
| abstract_inverted_index.external | 186, 195, 262 |
| abstract_inverted_index.imaging, | 51 |
| abstract_inverted_index.improved | 253 |
| abstract_inverted_index.internal | 180 |
| abstract_inverted_index.learning | 71 |
| abstract_inverted_index.metrics: | 216 |
| abstract_inverted_index.nodules. | 87, 305 |
| abstract_inverted_index.presence | 3 |
| abstract_inverted_index.promises | 309 |
| abstract_inverted_index.proposed | 294 |
| abstract_inverted_index.standard | 49 |
| abstract_inverted_index.training | 172 |
| abstract_inverted_index.videos), | 175, 179, 184 |
| abstract_inverted_index.Objective | 1 |
| abstract_inverted_index.attention | 133 |
| abstract_inverted_index.calcified | 85, 272, 304 |
| abstract_inverted_index.carcinoma | 23 |
| abstract_inverted_index.collected | 94 |
| abstract_inverted_index.confirmed | 267 |
| abstract_inverted_index.determine | 80 |
| abstract_inverted_index.diagnoses | 157 |
| abstract_inverted_index.diagnosis | 321 |
| abstract_inverted_index.heatmaps. | 282 |
| abstract_inverted_index.hospitals | 108 |
| abstract_inverted_index.inability | 43 |
| abstract_inverted_index.including | 130 |
| abstract_inverted_index.increased | 13 |
| abstract_inverted_index.optimized | 199, 248 |
| abstract_inverted_index.papillary | 21 |
| abstract_inverted_index.patients, | 101 |
| abstract_inverted_index.planning. | 324 |
| abstract_inverted_index.treatment | 57, 323 |
| abstract_inverted_index.Conclusion | 283 |
| abstract_inverted_index.accurately | 298 |
| abstract_inverted_index.assistance | 245 |
| abstract_inverted_index.associated | 10 |
| abstract_inverted_index.clinicians | 160 |
| abstract_inverted_index.containing | 102 |
| abstract_inverted_index.detection, | 318 |
| abstract_inverted_index.diagnostic | 34, 251, 277 |
| abstract_inverted_index.especially | 6 |
| abstract_inverted_index.generating | 280 |
| abstract_inverted_index.malignancy | 16, 82 |
| abstract_inverted_index.supporting | 319 |
| abstract_inverted_index.ultrasound | 35, 77, 95, 152, 291 |
| abstract_inverted_index.validation | 176 |
| abstract_inverted_index.(consistent | 274 |
| abstract_inverted_index.aspiration. | 61 |
| abstract_inverted_index.constructed | 119 |
| abstract_inverted_index.efficiently | 296 |
| abstract_inverted_index.fine-needle | 60 |
| abstract_inverted_index.implemented | 123 |
| abstract_inverted_index.limitations | 40 |
| abstract_inverted_index.performance | 141 |
| abstract_inverted_index.sensitivity | 137, 220 |
| abstract_inverted_index.specificity | 224 |
| abstract_inverted_index.unnecessary | 59 |
| abstract_inverted_index.optimization | 121 |
| abstract_inverted_index.outperformed | 207 |
| abstract_inverted_index.radiologists | 235 |
| abstract_inverted_index.specifically | 122 |
| abstract_inverted_index.Additionally, | 242 |
| abstract_inverted_index.calcification | 132 |
| abstract_inverted_index.interpretable | 69, 281, 313 |
| abstract_inverted_index.non-invasive, | 312 |
| abstract_inverted_index.significantly | 230 |
| abstract_inverted_index.calcification, | 5 |
| abstract_inverted_index.calcifications | 47 |
| abstract_inverted_index.radiologists). | 166 |
| abstract_inverted_index.radiologists’ | 250 |
| abstract_inverted_index.retrospectively | 93 |
| abstract_inverted_index.benign/malignant | 301 |
| abstract_inverted_index.InceptionResNetV2 | 127, 201 |
| abstract_inverted_index.microcalcification, | 7 |
| abstract_inverted_index.micro-calcifications. | 139 |
| abstract_inverted_index.calcification-optimized | 285 |
| abstract_inverted_index.calcification-optimized, | 68 |
| cited_by_percentile_year | |
| corresponding_author_ids | https://openalex.org/A5073142860 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 11 |
| corresponding_institution_ids | https://openalex.org/I27781120 |
| citation_normalized_percentile |