Manifold Interpolating Optimal-Transport Flows for Trajectory Inference. Article Swipe
YOU?
·
· 2022
· Open Access
·
We present a method called Manifold Interpolating Optimal-Transport Flow (MIOFlow) that learns stochastic, continuous population dynamics from static snapshot samples taken at sporadic timepoints. MIOFlow combines dynamic models, manifold learning, and optimal transport by training neural ordinary differential equations (Neural ODE) to interpolate between static population snapshots as penalized by optimal transport with manifold ground distance. Further, we ensure that the flow follows the geometry by operating in the latent space of an autoencoder that we call a geodesic autoencoder (GAE). In GAE the latent space distance between points is regularized to match a novel multiscale geodesic distance on the data manifold that we define. We show that this method is superior to normalizing flows, Schrödinger bridges and other generative models that are designed to flow from noise to data in terms of interpolating between populations. Theoretically, we link these trajectories with dynamic optimal transport. We evaluate our method on simulated data with bifurcations and merges, as well as scRNA-seq data from embryoid body differentiation, and acute myeloid leukemia treatment.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://pubmed.ncbi.nlm.nih.gov/37397786
- OA Status
- green
- Cited By
- 24
- References
- 16
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4382918912
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4382918912Canonical identifier for this work in OpenAlex
- Title
-
Manifold Interpolating Optimal-Transport Flows for Trajectory Inference.Work title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-12-01Full publication date if available
- Authors
-
Guillaume Huguet, D S Magruder, Alexander Tong, Oluwadamilola Fasina, Manik Kuchroo, Guy Wolf, Smita KrishnaswamyList of authors in order
- Landing page
-
https://pubmed.ncbi.nlm.nih.gov/37397786Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://pmc.ncbi.nlm.nih.gov/articles/PMC10312391/pdf/nihms-1883152.pdfDirect OA link when available
- Concepts
-
Autoencoder, Ode, Geodesic, Ordinary differential equation, Manifold (fluid mechanics), Population, Artificial neural network, Computer science, Mathematical optimization, Applied mathematics, Mathematics, Algorithm, Artificial intelligence, Mathematical analysis, Differential equation, Mechanical engineering, Demography, Sociology, EngineeringTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
24Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 10, 2024: 9, 2023: 5Per-year citation counts (last 5 years)
- References (count)
-
16Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4382918912 |
|---|---|
| doi | |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/37397786 |
| ids.openalex | https://openalex.org/W4382918912 |
| fwci | 2.95365979 |
| type | article |
| title | Manifold Interpolating Optimal-Transport Flows for Trajectory Inference. |
| biblio.issue | |
| biblio.volume | 35 |
| biblio.last_page | 29718 |
| biblio.first_page | 29705 |
| topics[0].id | https://openalex.org/T11289 |
| topics[0].field.id | https://openalex.org/fields/13 |
| topics[0].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[0].score | 0.9993000030517578 |
| topics[0].domain.id | https://openalex.org/domains/1 |
| topics[0].domain.display_name | Life Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1312 |
| topics[0].subfield.display_name | Molecular Biology |
| topics[0].display_name | Single-cell and spatial transcriptomics |
| topics[1].id | https://openalex.org/T11206 |
| topics[1].field.id | https://openalex.org/fields/31 |
| topics[1].field.display_name | Physics and Astronomy |
| topics[1].score | 0.9884999990463257 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/3109 |
| topics[1].subfield.display_name | Statistical and Nonlinear Physics |
| topics[1].display_name | Model Reduction and Neural Networks |
| topics[2].id | https://openalex.org/T10604 |
| topics[2].field.id | https://openalex.org/fields/13 |
| topics[2].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[2].score | 0.9818999767303467 |
| topics[2].domain.id | https://openalex.org/domains/1 |
| topics[2].domain.display_name | Life Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1312 |
| topics[2].subfield.display_name | Molecular Biology |
| topics[2].display_name | RNA Research and Splicing |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C101738243 |
| concepts[0].level | 3 |
| concepts[0].score | 0.6713754534721375 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q786435 |
| concepts[0].display_name | Autoencoder |
| concepts[1].id | https://openalex.org/C34862557 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6375695466995239 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q178985 |
| concepts[1].display_name | Ode |
| concepts[2].id | https://openalex.org/C165818556 |
| concepts[2].level | 2 |
| concepts[2].score | 0.605832040309906 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q213488 |
| concepts[2].display_name | Geodesic |
| concepts[3].id | https://openalex.org/C51544822 |
| concepts[3].level | 3 |
| concepts[3].score | 0.5344905853271484 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q465274 |
| concepts[3].display_name | Ordinary differential equation |
| concepts[4].id | https://openalex.org/C529865628 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5291388630867004 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q1790740 |
| concepts[4].display_name | Manifold (fluid mechanics) |
| concepts[5].id | https://openalex.org/C2908647359 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5122038722038269 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q2625603 |
| concepts[5].display_name | Population |
| concepts[6].id | https://openalex.org/C50644808 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5036534667015076 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[6].display_name | Artificial neural network |
| concepts[7].id | https://openalex.org/C41008148 |
| concepts[7].level | 0 |
| concepts[7].score | 0.4717367887496948 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[7].display_name | Computer science |
| concepts[8].id | https://openalex.org/C126255220 |
| concepts[8].level | 1 |
| concepts[8].score | 0.4519219398498535 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q141495 |
| concepts[8].display_name | Mathematical optimization |
| concepts[9].id | https://openalex.org/C28826006 |
| concepts[9].level | 1 |
| concepts[9].score | 0.4236738681793213 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q33521 |
| concepts[9].display_name | Applied mathematics |
| concepts[10].id | https://openalex.org/C33923547 |
| concepts[10].level | 0 |
| concepts[10].score | 0.3902856707572937 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[10].display_name | Mathematics |
| concepts[11].id | https://openalex.org/C11413529 |
| concepts[11].level | 1 |
| concepts[11].score | 0.3715536594390869 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[11].display_name | Algorithm |
| concepts[12].id | https://openalex.org/C154945302 |
| concepts[12].level | 1 |
| concepts[12].score | 0.2592966556549072 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[12].display_name | Artificial intelligence |
| concepts[13].id | https://openalex.org/C134306372 |
| concepts[13].level | 1 |
| concepts[13].score | 0.22631040215492249 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q7754 |
| concepts[13].display_name | Mathematical analysis |
| concepts[14].id | https://openalex.org/C78045399 |
| concepts[14].level | 2 |
| concepts[14].score | 0.216864675283432 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q11214 |
| concepts[14].display_name | Differential equation |
| concepts[15].id | https://openalex.org/C78519656 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q101333 |
| concepts[15].display_name | Mechanical engineering |
| concepts[16].id | https://openalex.org/C149923435 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q37732 |
| concepts[16].display_name | Demography |
| concepts[17].id | https://openalex.org/C144024400 |
| concepts[17].level | 0 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q21201 |
| concepts[17].display_name | Sociology |
| concepts[18].id | https://openalex.org/C127413603 |
| concepts[18].level | 0 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[18].display_name | Engineering |
| keywords[0].id | https://openalex.org/keywords/autoencoder |
| keywords[0].score | 0.6713754534721375 |
| keywords[0].display_name | Autoencoder |
| keywords[1].id | https://openalex.org/keywords/ode |
| keywords[1].score | 0.6375695466995239 |
| keywords[1].display_name | Ode |
| keywords[2].id | https://openalex.org/keywords/geodesic |
| keywords[2].score | 0.605832040309906 |
| keywords[2].display_name | Geodesic |
| keywords[3].id | https://openalex.org/keywords/ordinary-differential-equation |
| keywords[3].score | 0.5344905853271484 |
| keywords[3].display_name | Ordinary differential equation |
| keywords[4].id | https://openalex.org/keywords/manifold |
| keywords[4].score | 0.5291388630867004 |
| keywords[4].display_name | Manifold (fluid mechanics) |
| keywords[5].id | https://openalex.org/keywords/population |
| keywords[5].score | 0.5122038722038269 |
| keywords[5].display_name | Population |
| keywords[6].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[6].score | 0.5036534667015076 |
| keywords[6].display_name | Artificial neural network |
| keywords[7].id | https://openalex.org/keywords/computer-science |
| keywords[7].score | 0.4717367887496948 |
| keywords[7].display_name | Computer science |
| keywords[8].id | https://openalex.org/keywords/mathematical-optimization |
| keywords[8].score | 0.4519219398498535 |
| keywords[8].display_name | Mathematical optimization |
| keywords[9].id | https://openalex.org/keywords/applied-mathematics |
| keywords[9].score | 0.4236738681793213 |
| keywords[9].display_name | Applied mathematics |
| keywords[10].id | https://openalex.org/keywords/mathematics |
| keywords[10].score | 0.3902856707572937 |
| keywords[10].display_name | Mathematics |
| keywords[11].id | https://openalex.org/keywords/algorithm |
| keywords[11].score | 0.3715536594390869 |
| keywords[11].display_name | Algorithm |
| keywords[12].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[12].score | 0.2592966556549072 |
| keywords[12].display_name | Artificial intelligence |
| keywords[13].id | https://openalex.org/keywords/mathematical-analysis |
| keywords[13].score | 0.22631040215492249 |
| keywords[13].display_name | Mathematical analysis |
| keywords[14].id | https://openalex.org/keywords/differential-equation |
| keywords[14].score | 0.216864675283432 |
| keywords[14].display_name | Differential equation |
| language | en |
| locations[0].id | pmid:37397786 |
| locations[0].is_oa | False |
| locations[0].source.id | https://openalex.org/S4306525036 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | PubMed |
| locations[0].source.host_organization | https://openalex.org/I1299303238 |
| locations[0].source.host_organization_name | National Institutes of Health |
| locations[0].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Advances in neural information processing systems |
| locations[0].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/37397786 |
| locations[1].id | pmh:oai:pubmedcentral.nih.gov:10312391 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S2764455111 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed Central |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | https://pmc.ncbi.nlm.nih.gov/articles/PMC10312391/pdf/nihms-1883152.pdf |
| locations[1].version | submittedVersion |
| locations[1].raw_type | Text |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Adv Neural Inf Process Syst |
| locations[1].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/10312391 |
| indexed_in | pubmed |
| authorships[0].author.id | https://openalex.org/A5034224130 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-4746-6030 |
| authorships[0].author.display_name | Guillaume Huguet |
| authorships[0].countries | CA |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I4210164802, https://openalex.org/I70931966 |
| authorships[0].affiliations[0].raw_affiliation_string | Université de Montréal; Mila - Quebec AI Institute. |
| authorships[0].institutions[0].id | https://openalex.org/I4210164802 |
| authorships[0].institutions[0].ror | https://ror.org/05c22rx21 |
| authorships[0].institutions[0].type | facility |
| authorships[0].institutions[0].lineage | https://openalex.org/I4210164802 |
| authorships[0].institutions[0].country_code | CA |
| authorships[0].institutions[0].display_name | Mila - Quebec Artificial Intelligence Institute |
| authorships[0].institutions[1].id | https://openalex.org/I70931966 |
| authorships[0].institutions[1].ror | https://ror.org/0161xgx34 |
| authorships[0].institutions[1].type | education |
| authorships[0].institutions[1].lineage | https://openalex.org/I70931966 |
| authorships[0].institutions[1].country_code | CA |
| authorships[0].institutions[1].display_name | Université de Montréal |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Guillaume Huguet |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Université de Montréal; Mila - Quebec AI Institute. |
| authorships[1].author.id | https://openalex.org/A5085043599 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | D S Magruder |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I32971472 |
| authorships[1].affiliations[0].raw_affiliation_string | Yale University. |
| authorships[1].institutions[0].id | https://openalex.org/I32971472 |
| authorships[1].institutions[0].ror | https://ror.org/03v76x132 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I32971472 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | Yale University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | D S Magruder |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Yale University. |
| authorships[2].author.id | https://openalex.org/A5053568123 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-2031-4096 |
| authorships[2].author.display_name | Alexander Tong |
| authorships[2].countries | CA |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I4210164802, https://openalex.org/I70931966 |
| authorships[2].affiliations[0].raw_affiliation_string | Université de Montréal; Mila - Quebec AI Institute. |
| authorships[2].institutions[0].id | https://openalex.org/I4210164802 |
| authorships[2].institutions[0].ror | https://ror.org/05c22rx21 |
| authorships[2].institutions[0].type | facility |
| authorships[2].institutions[0].lineage | https://openalex.org/I4210164802 |
| authorships[2].institutions[0].country_code | CA |
| authorships[2].institutions[0].display_name | Mila - Quebec Artificial Intelligence Institute |
| authorships[2].institutions[1].id | https://openalex.org/I70931966 |
| authorships[2].institutions[1].ror | https://ror.org/0161xgx34 |
| authorships[2].institutions[1].type | education |
| authorships[2].institutions[1].lineage | https://openalex.org/I70931966 |
| authorships[2].institutions[1].country_code | CA |
| authorships[2].institutions[1].display_name | Université de Montréal |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Alexander Tong |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Université de Montréal; Mila - Quebec AI Institute. |
| authorships[3].author.id | https://openalex.org/A5113005095 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Oluwadamilola Fasina |
| authorships[3].countries | US |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I32971472 |
| authorships[3].affiliations[0].raw_affiliation_string | Yale University. |
| authorships[3].institutions[0].id | https://openalex.org/I32971472 |
| authorships[3].institutions[0].ror | https://ror.org/03v76x132 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I32971472 |
| authorships[3].institutions[0].country_code | US |
| authorships[3].institutions[0].display_name | Yale University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Oluwadamilola Fasina |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Yale University. |
| authorships[4].author.id | https://openalex.org/A5044308510 |
| authorships[4].author.orcid | https://orcid.org/0000-0001-7512-9739 |
| authorships[4].author.display_name | Manik Kuchroo |
| authorships[4].countries | US |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I32971472 |
| authorships[4].affiliations[0].raw_affiliation_string | Yale University. |
| authorships[4].institutions[0].id | https://openalex.org/I32971472 |
| authorships[4].institutions[0].ror | https://ror.org/03v76x132 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I32971472 |
| authorships[4].institutions[0].country_code | US |
| authorships[4].institutions[0].display_name | Yale University |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Manik Kuchroo |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Yale University. |
| authorships[5].author.id | https://openalex.org/A5005117825 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-6740-059X |
| authorships[5].author.display_name | Guy Wolf |
| authorships[5].countries | CA |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I4210164802, https://openalex.org/I70931966 |
| authorships[5].affiliations[0].raw_affiliation_string | Université de Montréal; Mila - Quebec AI Institute. |
| authorships[5].institutions[0].id | https://openalex.org/I4210164802 |
| authorships[5].institutions[0].ror | https://ror.org/05c22rx21 |
| authorships[5].institutions[0].type | facility |
| authorships[5].institutions[0].lineage | https://openalex.org/I4210164802 |
| authorships[5].institutions[0].country_code | CA |
| authorships[5].institutions[0].display_name | Mila - Quebec Artificial Intelligence Institute |
| authorships[5].institutions[1].id | https://openalex.org/I70931966 |
| authorships[5].institutions[1].ror | https://ror.org/0161xgx34 |
| authorships[5].institutions[1].type | education |
| authorships[5].institutions[1].lineage | https://openalex.org/I70931966 |
| authorships[5].institutions[1].country_code | CA |
| authorships[5].institutions[1].display_name | Université de Montréal |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Guy Wolf |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Université de Montréal; Mila - Quebec AI Institute. |
| authorships[6].author.id | https://openalex.org/A5045475274 |
| authorships[6].author.orcid | https://orcid.org/0000-0001-5823-1985 |
| authorships[6].author.display_name | Smita Krishnaswamy |
| authorships[6].countries | US |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I32971472 |
| authorships[6].affiliations[0].raw_affiliation_string | Yale University. |
| authorships[6].institutions[0].id | https://openalex.org/I32971472 |
| authorships[6].institutions[0].ror | https://ror.org/03v76x132 |
| authorships[6].institutions[0].type | education |
| authorships[6].institutions[0].lineage | https://openalex.org/I32971472 |
| authorships[6].institutions[0].country_code | US |
| authorships[6].institutions[0].display_name | Yale University |
| authorships[6].author_position | last |
| authorships[6].raw_author_name | Smita Krishnaswamy |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | Yale University. |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://pmc.ncbi.nlm.nih.gov/articles/PMC10312391/pdf/nihms-1883152.pdf |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Manifold Interpolating Optimal-Transport Flows for Trajectory Inference. |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T04:12:42.849631 |
| primary_topic.id | https://openalex.org/T11289 |
| primary_topic.field.id | https://openalex.org/fields/13 |
| primary_topic.field.display_name | Biochemistry, Genetics and Molecular Biology |
| primary_topic.score | 0.9993000030517578 |
| primary_topic.domain.id | https://openalex.org/domains/1 |
| primary_topic.domain.display_name | Life Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1312 |
| primary_topic.subfield.display_name | Molecular Biology |
| primary_topic.display_name | Single-cell and spatial transcriptomics |
| related_works | https://openalex.org/W4226129964, https://openalex.org/W4320521253, https://openalex.org/W2810270255, https://openalex.org/W4362579742, https://openalex.org/W4206695959, https://openalex.org/W2316250911, https://openalex.org/W2263887205, https://openalex.org/W4302422245, https://openalex.org/W2376970602, https://openalex.org/W4283776350 |
| cited_by_count | 24 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 10 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 9 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 5 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:pubmedcentral.nih.gov:10312391 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2764455111 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | PubMed Central |
| best_oa_location.source.host_organization | https://openalex.org/I1299303238 |
| best_oa_location.source.host_organization_name | National Institutes of Health |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I1299303238 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://pmc.ncbi.nlm.nih.gov/articles/PMC10312391/pdf/nihms-1883152.pdf |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | Text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | Adv Neural Inf Process Syst |
| best_oa_location.landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/10312391 |
| primary_location.id | pmid:37397786 |
| primary_location.is_oa | False |
| primary_location.source.id | https://openalex.org/S4306525036 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | PubMed |
| primary_location.source.host_organization | https://openalex.org/I1299303238 |
| primary_location.source.host_organization_name | National Institutes of Health |
| primary_location.source.host_organization_lineage | https://openalex.org/I1299303238 |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Advances in neural information processing systems |
| primary_location.landing_page_url | https://pubmed.ncbi.nlm.nih.gov/37397786 |
| publication_date | 2022-12-01 |
| publication_year | 2022 |
| referenced_works | https://openalex.org/W1984883254, https://openalex.org/W1978879498, https://openalex.org/W4200432640, https://openalex.org/W2509957998, https://openalex.org/W2943387368, https://openalex.org/W3035182494, https://openalex.org/W3174608384, https://openalex.org/W2766437506, https://openalex.org/W3197354362, https://openalex.org/W3215961257, https://openalex.org/W3209211486, https://openalex.org/W2927507212, https://openalex.org/W2951799803, https://openalex.org/W4225277649, https://openalex.org/W2993894543, https://openalex.org/W3194520274 |
| referenced_works_count | 16 |
| abstract_inverted_index.a | 2, 77, 93 |
| abstract_inverted_index.In | 81 |
| abstract_inverted_index.We | 0, 105, 145 |
| abstract_inverted_index.an | 72 |
| abstract_inverted_index.as | 47, 156, 158 |
| abstract_inverted_index.at | 21 |
| abstract_inverted_index.by | 33, 49, 65 |
| abstract_inverted_index.in | 67, 130 |
| abstract_inverted_index.is | 89, 110 |
| abstract_inverted_index.of | 71, 132 |
| abstract_inverted_index.on | 98, 149 |
| abstract_inverted_index.to | 41, 91, 112, 124, 128 |
| abstract_inverted_index.we | 57, 75, 103, 137 |
| abstract_inverted_index.GAE | 82 |
| abstract_inverted_index.and | 30, 117, 154, 165 |
| abstract_inverted_index.are | 122 |
| abstract_inverted_index.our | 147 |
| abstract_inverted_index.the | 60, 63, 68, 83, 99 |
| abstract_inverted_index.Flow | 8 |
| abstract_inverted_index.ODE) | 40 |
| abstract_inverted_index.body | 163 |
| abstract_inverted_index.call | 76 |
| abstract_inverted_index.data | 100, 129, 151, 160 |
| abstract_inverted_index.flow | 61, 125 |
| abstract_inverted_index.from | 16, 126, 161 |
| abstract_inverted_index.link | 138 |
| abstract_inverted_index.show | 106 |
| abstract_inverted_index.that | 10, 59, 74, 102, 107, 121 |
| abstract_inverted_index.this | 108 |
| abstract_inverted_index.well | 157 |
| abstract_inverted_index.with | 52, 141, 152 |
| abstract_inverted_index.acute | 166 |
| abstract_inverted_index.match | 92 |
| abstract_inverted_index.noise | 127 |
| abstract_inverted_index.novel | 94 |
| abstract_inverted_index.other | 118 |
| abstract_inverted_index.space | 70, 85 |
| abstract_inverted_index.taken | 20 |
| abstract_inverted_index.terms | 131 |
| abstract_inverted_index.these | 139 |
| abstract_inverted_index.(GAE). | 80 |
| abstract_inverted_index.called | 4 |
| abstract_inverted_index.ensure | 58 |
| abstract_inverted_index.flows, | 114 |
| abstract_inverted_index.ground | 54 |
| abstract_inverted_index.latent | 69, 84 |
| abstract_inverted_index.learns | 11 |
| abstract_inverted_index.method | 3, 109, 148 |
| abstract_inverted_index.models | 120 |
| abstract_inverted_index.neural | 35 |
| abstract_inverted_index.points | 88 |
| abstract_inverted_index.static | 17, 44 |
| abstract_inverted_index.(Neural | 39 |
| abstract_inverted_index.MIOFlow | 24 |
| abstract_inverted_index.between | 43, 87, 134 |
| abstract_inverted_index.bridges | 116 |
| abstract_inverted_index.define. | 104 |
| abstract_inverted_index.dynamic | 26, 142 |
| abstract_inverted_index.follows | 62 |
| abstract_inverted_index.merges, | 155 |
| abstract_inverted_index.models, | 27 |
| abstract_inverted_index.myeloid | 167 |
| abstract_inverted_index.optimal | 31, 50, 143 |
| abstract_inverted_index.present | 1 |
| abstract_inverted_index.samples | 19 |
| abstract_inverted_index.Further, | 56 |
| abstract_inverted_index.Manifold | 5 |
| abstract_inverted_index.combines | 25 |
| abstract_inverted_index.designed | 123 |
| abstract_inverted_index.distance | 86, 97 |
| abstract_inverted_index.dynamics | 15 |
| abstract_inverted_index.embryoid | 162 |
| abstract_inverted_index.evaluate | 146 |
| abstract_inverted_index.geodesic | 78, 96 |
| abstract_inverted_index.geometry | 64 |
| abstract_inverted_index.leukemia | 168 |
| abstract_inverted_index.manifold | 28, 53, 101 |
| abstract_inverted_index.ordinary | 36 |
| abstract_inverted_index.snapshot | 18 |
| abstract_inverted_index.sporadic | 22 |
| abstract_inverted_index.superior | 111 |
| abstract_inverted_index.training | 34 |
| abstract_inverted_index.(MIOFlow) | 9 |
| abstract_inverted_index.distance. | 55 |
| abstract_inverted_index.equations | 38 |
| abstract_inverted_index.learning, | 29 |
| abstract_inverted_index.operating | 66 |
| abstract_inverted_index.penalized | 48 |
| abstract_inverted_index.scRNA-seq | 159 |
| abstract_inverted_index.simulated | 150 |
| abstract_inverted_index.snapshots | 46 |
| abstract_inverted_index.transport | 32, 51 |
| abstract_inverted_index.continuous | 13 |
| abstract_inverted_index.generative | 119 |
| abstract_inverted_index.multiscale | 95 |
| abstract_inverted_index.population | 14, 45 |
| abstract_inverted_index.transport. | 144 |
| abstract_inverted_index.treatment. | 169 |
| abstract_inverted_index.autoencoder | 73, 79 |
| abstract_inverted_index.interpolate | 42 |
| abstract_inverted_index.normalizing | 113 |
| abstract_inverted_index.regularized | 90 |
| abstract_inverted_index.stochastic, | 12 |
| abstract_inverted_index.timepoints. | 23 |
| abstract_inverted_index.Schrödinger | 115 |
| abstract_inverted_index.bifurcations | 153 |
| abstract_inverted_index.differential | 37 |
| abstract_inverted_index.populations. | 135 |
| abstract_inverted_index.trajectories | 140 |
| abstract_inverted_index.Interpolating | 6 |
| abstract_inverted_index.interpolating | 133 |
| abstract_inverted_index.Theoretically, | 136 |
| abstract_inverted_index.differentiation, | 164 |
| abstract_inverted_index.Optimal-Transport | 7 |
| cited_by_percentile_year.max | 99 |
| cited_by_percentile_year.min | 97 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 7 |
| citation_normalized_percentile.value | 0.89083431 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |