Manifolk: A 3D t-SNE Visualizer Article Swipe
Krishna Kodur
,
Ashwin Ramesh Babu
,
Fillia Makedon
·
YOU?
·
· 2021
· Open Access
·
· DOI: https://doi.org/10.1145/3453892.3466619
YOU?
·
· 2021
· Open Access
·
· DOI: https://doi.org/10.1145/3453892.3466619
Manifolk is a tool to visualize the output of dimensionality reduction algorithms like t-SNE, PCA etc. One of this tool's main uses is that it de-clutters graphs by plotting data points pertaining to a subset of labels. The subset of labels to be plotted can be selected using the provided checkboxes. A case study on data from a publicly available action recognition dataset like UCF101 shows how this tool can help find outliers. With the rise in self-supervised methods for training deep neural networks, this tool helps researchers better visualize the embeddings learned by the model.
Related Topics
Metadata
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1145/3453892.3466619
- https://dl.acm.org/doi/pdf/10.1145/3453892.3466619
- OA Status
- gold
- References
- 2
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W3181507974
All OpenAlex metadata
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3181507974Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1145/3453892.3466619Digital Object Identifier
- Title
-
Manifolk: A 3D t-SNE VisualizerWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2021Year of publication
- Publication date
-
2021-06-29Full publication date if available
- Authors
-
Krishna Kodur, Ashwin Ramesh Babu, Fillia MakedonList of authors in order
- Landing page
-
https://doi.org/10.1145/3453892.3466619Publisher landing page
- PDF URL
-
https://dl.acm.org/doi/pdf/10.1145/3453892.3466619Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://dl.acm.org/doi/pdf/10.1145/3453892.3466619Direct OA link when available
- Concepts
-
Computer science, Computer graphics (images)Top concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
2Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3181507974 |
|---|---|
| doi | https://doi.org/10.1145/3453892.3466619 |
| ids.doi | https://doi.org/10.1145/3453892.3466619 |
| ids.mag | 3181507974 |
| ids.openalex | https://openalex.org/W3181507974 |
| fwci | 0.0 |
| type | article |
| title | Manifolk: A 3D t-SNE Visualizer |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | 108 |
| biblio.first_page | 107 |
| topics[0].id | https://openalex.org/T11439 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9690999984741211 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Video Analysis and Summarization |
| topics[1].id | https://openalex.org/T10775 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9047999978065491 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1707 |
| topics[1].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[1].display_name | Generative Adversarial Networks and Image Synthesis |
| topics[2].id | https://openalex.org/T10799 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9023000001907349 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1707 |
| topics[2].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[2].display_name | Data Visualization and Analytics |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.6351048946380615 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C121684516 |
| concepts[1].level | 1 |
| concepts[1].score | 0.35942718386650085 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q7600677 |
| concepts[1].display_name | Computer graphics (images) |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.6351048946380615 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/computer-graphics |
| keywords[1].score | 0.35942718386650085 |
| keywords[1].display_name | Computer graphics (images) |
| language | en |
| locations[0].id | doi:10.1145/3453892.3466619 |
| locations[0].is_oa | True |
| locations[0].source | |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://dl.acm.org/doi/pdf/10.1145/3453892.3466619 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | proceedings-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Proceedings of the 14th PErvasive Technologies Related to Assistive Environments Conference |
| locations[0].landing_page_url | https://doi.org/10.1145/3453892.3466619 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5026425928 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-7663-2790 |
| authorships[0].author.display_name | Krishna Kodur |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I189196454 |
| authorships[0].affiliations[0].raw_affiliation_string | The University of Texas at Arlington, USA |
| authorships[0].institutions[0].id | https://openalex.org/I189196454 |
| authorships[0].institutions[0].ror | https://ror.org/019kgqr73 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I189196454 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | The University of Texas at Arlington |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Krishna Kodur |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | The University of Texas at Arlington, USA |
| authorships[1].author.id | https://openalex.org/A5023297665 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-4131-7659 |
| authorships[1].author.display_name | Ashwin Ramesh Babu |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I189196454 |
| authorships[1].affiliations[0].raw_affiliation_string | The University of Texas at Arlington, USA |
| authorships[1].institutions[0].id | https://openalex.org/I189196454 |
| authorships[1].institutions[0].ror | https://ror.org/019kgqr73 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I189196454 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | The University of Texas at Arlington |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Ashwin Ramesh Babu |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | The University of Texas at Arlington, USA |
| authorships[2].author.id | https://openalex.org/A5044363105 |
| authorships[2].author.orcid | https://orcid.org/0009-0001-8831-6872 |
| authorships[2].author.display_name | Fillia Makedon |
| authorships[2].countries | US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I189196454 |
| authorships[2].affiliations[0].raw_affiliation_string | The University of Texas at Arlington, USA |
| authorships[2].institutions[0].id | https://openalex.org/I189196454 |
| authorships[2].institutions[0].ror | https://ror.org/019kgqr73 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I189196454 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | The University of Texas at Arlington |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Fillia makedon |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | The University of Texas at Arlington, USA |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://dl.acm.org/doi/pdf/10.1145/3453892.3466619 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Manifolk: A 3D t-SNE Visualizer |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11439 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9690999984741211 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Video Analysis and Summarization |
| related_works | https://openalex.org/W4391375266, https://openalex.org/W2748952813, https://openalex.org/W2390279801, https://openalex.org/W2358668433, https://openalex.org/W4396701345, https://openalex.org/W2376932109, https://openalex.org/W2001405890, https://openalex.org/W4396696052, https://openalex.org/W4402327032, https://openalex.org/W2382290278 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1145/3453892.3466619 |
| best_oa_location.is_oa | True |
| best_oa_location.source | |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://dl.acm.org/doi/pdf/10.1145/3453892.3466619 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | proceedings-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Proceedings of the 14th PErvasive Technologies Related to Assistive Environments Conference |
| best_oa_location.landing_page_url | https://doi.org/10.1145/3453892.3466619 |
| primary_location.id | doi:10.1145/3453892.3466619 |
| primary_location.is_oa | True |
| primary_location.source | |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://dl.acm.org/doi/pdf/10.1145/3453892.3466619 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | proceedings-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Proceedings of the 14th PErvasive Technologies Related to Assistive Environments Conference |
| primary_location.landing_page_url | https://doi.org/10.1145/3453892.3466619 |
| publication_date | 2021-06-29 |
| publication_year | 2021 |
| referenced_works | https://openalex.org/W3114632476, https://openalex.org/W2949650786 |
| referenced_works_count | 2 |
| abstract_inverted_index.A | 51 |
| abstract_inverted_index.a | 2, 33, 57 |
| abstract_inverted_index.be | 42, 45 |
| abstract_inverted_index.by | 27, 93 |
| abstract_inverted_index.in | 76 |
| abstract_inverted_index.is | 1, 22 |
| abstract_inverted_index.it | 24 |
| abstract_inverted_index.of | 8, 17, 35, 39 |
| abstract_inverted_index.on | 54 |
| abstract_inverted_index.to | 4, 32, 41 |
| abstract_inverted_index.One | 16 |
| abstract_inverted_index.PCA | 14 |
| abstract_inverted_index.The | 37 |
| abstract_inverted_index.can | 44, 69 |
| abstract_inverted_index.for | 79 |
| abstract_inverted_index.how | 66 |
| abstract_inverted_index.the | 6, 48, 74, 90, 94 |
| abstract_inverted_index.With | 73 |
| abstract_inverted_index.case | 52 |
| abstract_inverted_index.data | 29, 55 |
| abstract_inverted_index.deep | 81 |
| abstract_inverted_index.etc. | 15 |
| abstract_inverted_index.find | 71 |
| abstract_inverted_index.from | 56 |
| abstract_inverted_index.help | 70 |
| abstract_inverted_index.like | 12, 63 |
| abstract_inverted_index.main | 20 |
| abstract_inverted_index.rise | 75 |
| abstract_inverted_index.that | 23 |
| abstract_inverted_index.this | 18, 67, 84 |
| abstract_inverted_index.tool | 3, 68, 85 |
| abstract_inverted_index.uses | 21 |
| abstract_inverted_index.helps | 86 |
| abstract_inverted_index.shows | 65 |
| abstract_inverted_index.study | 53 |
| abstract_inverted_index.using | 47 |
| abstract_inverted_index.UCF101 | 64 |
| abstract_inverted_index.action | 60 |
| abstract_inverted_index.better | 88 |
| abstract_inverted_index.graphs | 26 |
| abstract_inverted_index.labels | 40 |
| abstract_inverted_index.model. | 95 |
| abstract_inverted_index.neural | 82 |
| abstract_inverted_index.output | 7 |
| abstract_inverted_index.points | 30 |
| abstract_inverted_index.subset | 34, 38 |
| abstract_inverted_index.t-SNE, | 13 |
| abstract_inverted_index.tool's | 19 |
| abstract_inverted_index.dataset | 62 |
| abstract_inverted_index.labels. | 36 |
| abstract_inverted_index.learned | 92 |
| abstract_inverted_index.methods | 78 |
| abstract_inverted_index.plotted | 43 |
| abstract_inverted_index.Manifolk | 0 |
| abstract_inverted_index.plotting | 28 |
| abstract_inverted_index.provided | 49 |
| abstract_inverted_index.publicly | 58 |
| abstract_inverted_index.selected | 46 |
| abstract_inverted_index.training | 80 |
| abstract_inverted_index.available | 59 |
| abstract_inverted_index.networks, | 83 |
| abstract_inverted_index.outliers. | 72 |
| abstract_inverted_index.reduction | 10 |
| abstract_inverted_index.visualize | 5, 89 |
| abstract_inverted_index.algorithms | 11 |
| abstract_inverted_index.embeddings | 91 |
| abstract_inverted_index.pertaining | 31 |
| abstract_inverted_index.checkboxes. | 50 |
| abstract_inverted_index.de-clutters | 25 |
| abstract_inverted_index.recognition | 61 |
| abstract_inverted_index.researchers | 87 |
| abstract_inverted_index.dimensionality | 9 |
| abstract_inverted_index.self-supervised | 77 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 3 |
| citation_normalized_percentile.value | 0.07749307 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |