Manipulating Trajectory Prediction with Backdoors Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2312.13863
Autonomous vehicles ought to predict the surrounding agents' trajectories to allow safe maneuvers in uncertain and complex traffic situations. As companies increasingly apply trajectory prediction in the real world, security becomes a relevant concern. In this paper, we focus on backdoors - a security threat acknowledged in other fields but so far overlooked for trajectory prediction. To this end, we describe and investigate four triggers that could affect trajectory prediction. We then show that these triggers (for example, a braking vehicle), when correlated with a desired output (for example, a curve) during training, cause the desired output of a state-of-the-art trajectory prediction model. In other words, the model has good benign performance but is vulnerable to backdoors. This is the case even if the trigger maneuver is performed by a non-casual agent behind the target vehicle. As a side-effect, our analysis reveals interesting limitations within trajectory prediction models. Finally, we evaluate a range of defenses against backdoors. While some, like simple offroad checks, do not enable detection for all triggers, clustering is a promising candidate to support manual inspection to find backdoors.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2312.13863
- https://arxiv.org/pdf/2312.13863
- OA Status
- green
- Cited By
- 2
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4390136877
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4390136877Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2312.13863Digital Object Identifier
- Title
-
Manipulating Trajectory Prediction with BackdoorsWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-12-21Full publication date if available
- Authors
-
Kaouther Massoud, Kathrin Grosse, Mickaël Chen, Matthieu Cord, Patrick Pérez, Alexandre AlahiList of authors in order
- Landing page
-
https://arxiv.org/abs/2312.13863Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2312.13863Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2312.13863Direct OA link when available
- Concepts
-
Trajectory, Computer science, Focus (optics), Range (aeronautics), Cluster analysis, Artificial intelligence, Computer security, Machine learning, Engineering, Aerospace engineering, Astronomy, Physics, OpticsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
2Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1, 2024: 1Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4390136877 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2312.13863 |
| ids.doi | https://doi.org/10.48550/arxiv.2312.13863 |
| ids.openalex | https://openalex.org/W4390136877 |
| fwci | |
| type | preprint |
| title | Manipulating Trajectory Prediction with Backdoors |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11512 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9980000257492065 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Anomaly Detection Techniques and Applications |
| topics[1].id | https://openalex.org/T11099 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9939000010490417 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2203 |
| topics[1].subfield.display_name | Automotive Engineering |
| topics[1].display_name | Autonomous Vehicle Technology and Safety |
| topics[2].id | https://openalex.org/T11241 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9905999898910522 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1711 |
| topics[2].subfield.display_name | Signal Processing |
| topics[2].display_name | Advanced Malware Detection Techniques |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C13662910 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8987460136413574 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q193139 |
| concepts[0].display_name | Trajectory |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.7686010599136353 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C192209626 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5143605470657349 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q190909 |
| concepts[2].display_name | Focus (optics) |
| concepts[3].id | https://openalex.org/C204323151 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5036134123802185 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q905424 |
| concepts[3].display_name | Range (aeronautics) |
| concepts[4].id | https://openalex.org/C73555534 |
| concepts[4].level | 2 |
| concepts[4].score | 0.4505942761898041 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q622825 |
| concepts[4].display_name | Cluster analysis |
| concepts[5].id | https://openalex.org/C154945302 |
| concepts[5].level | 1 |
| concepts[5].score | 0.4165421426296234 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[5].display_name | Artificial intelligence |
| concepts[6].id | https://openalex.org/C38652104 |
| concepts[6].level | 1 |
| concepts[6].score | 0.3716547191143036 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q3510521 |
| concepts[6].display_name | Computer security |
| concepts[7].id | https://openalex.org/C119857082 |
| concepts[7].level | 1 |
| concepts[7].score | 0.32813742756843567 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[7].display_name | Machine learning |
| concepts[8].id | https://openalex.org/C127413603 |
| concepts[8].level | 0 |
| concepts[8].score | 0.10657232999801636 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[8].display_name | Engineering |
| concepts[9].id | https://openalex.org/C146978453 |
| concepts[9].level | 1 |
| concepts[9].score | 0.0 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q3798668 |
| concepts[9].display_name | Aerospace engineering |
| concepts[10].id | https://openalex.org/C1276947 |
| concepts[10].level | 1 |
| concepts[10].score | 0.0 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q333 |
| concepts[10].display_name | Astronomy |
| concepts[11].id | https://openalex.org/C121332964 |
| concepts[11].level | 0 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[11].display_name | Physics |
| concepts[12].id | https://openalex.org/C120665830 |
| concepts[12].level | 1 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q14620 |
| concepts[12].display_name | Optics |
| keywords[0].id | https://openalex.org/keywords/trajectory |
| keywords[0].score | 0.8987460136413574 |
| keywords[0].display_name | Trajectory |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.7686010599136353 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/focus |
| keywords[2].score | 0.5143605470657349 |
| keywords[2].display_name | Focus (optics) |
| keywords[3].id | https://openalex.org/keywords/range |
| keywords[3].score | 0.5036134123802185 |
| keywords[3].display_name | Range (aeronautics) |
| keywords[4].id | https://openalex.org/keywords/cluster-analysis |
| keywords[4].score | 0.4505942761898041 |
| keywords[4].display_name | Cluster analysis |
| keywords[5].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[5].score | 0.4165421426296234 |
| keywords[5].display_name | Artificial intelligence |
| keywords[6].id | https://openalex.org/keywords/computer-security |
| keywords[6].score | 0.3716547191143036 |
| keywords[6].display_name | Computer security |
| keywords[7].id | https://openalex.org/keywords/machine-learning |
| keywords[7].score | 0.32813742756843567 |
| keywords[7].display_name | Machine learning |
| keywords[8].id | https://openalex.org/keywords/engineering |
| keywords[8].score | 0.10657232999801636 |
| keywords[8].display_name | Engineering |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2312.13863 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2312.13863 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2312.13863 |
| locations[1].id | doi:10.48550/arxiv.2312.13863 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2312.13863 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5109667925 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Kaouther Massoud |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Massoud, Kaouther |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5018930655 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-5401-4171 |
| authorships[1].author.display_name | Kathrin Grosse |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Grosse, Kathrin |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5058389247 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-3960-2389 |
| authorships[2].author.display_name | Mickaël Chen |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Chen, Mickael |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5108118084 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-0627-5844 |
| authorships[3].author.display_name | Matthieu Cord |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Cord, Matthieu |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5076170578 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-8124-1206 |
| authorships[4].author.display_name | Patrick Pérez |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Pérez, Patrick |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5068504559 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-5004-1498 |
| authorships[5].author.display_name | Alexandre Alahi |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Alahi, Alexandre |
| authorships[5].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2312.13863 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2023-12-23T00:00:00 |
| display_name | Manipulating Trajectory Prediction with Backdoors |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T11512 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9980000257492065 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Anomaly Detection Techniques and Applications |
| related_works | https://openalex.org/W1941703695, https://openalex.org/W3131574667, https://openalex.org/W4323768008, https://openalex.org/W4248382324, https://openalex.org/W4360995134, https://openalex.org/W2039473718, https://openalex.org/W2387529410, https://openalex.org/W3023605104, https://openalex.org/W2383578611, https://openalex.org/W2987583674 |
| cited_by_count | 2 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2312.13863 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2312.13863 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2312.13863 |
| primary_location.id | pmh:oai:arXiv.org:2312.13863 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2312.13863 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2312.13863 |
| publication_date | 2023-12-21 |
| publication_year | 2023 |
| referenced_works_count | 0 |
| abstract_inverted_index.- | 41 |
| abstract_inverted_index.a | 31, 42, 78, 84, 89, 98, 129, 137, 151, 172 |
| abstract_inverted_index.As | 19, 136 |
| abstract_inverted_index.In | 34, 103 |
| abstract_inverted_index.To | 56 |
| abstract_inverted_index.We | 70 |
| abstract_inverted_index.by | 128 |
| abstract_inverted_index.do | 163 |
| abstract_inverted_index.if | 122 |
| abstract_inverted_index.in | 13, 25, 46 |
| abstract_inverted_index.is | 113, 118, 126, 171 |
| abstract_inverted_index.of | 97, 153 |
| abstract_inverted_index.on | 39 |
| abstract_inverted_index.so | 50 |
| abstract_inverted_index.to | 3, 9, 115, 175, 179 |
| abstract_inverted_index.we | 37, 59, 149 |
| abstract_inverted_index.all | 168 |
| abstract_inverted_index.and | 15, 61 |
| abstract_inverted_index.but | 49, 112 |
| abstract_inverted_index.far | 51 |
| abstract_inverted_index.for | 53, 167 |
| abstract_inverted_index.has | 108 |
| abstract_inverted_index.not | 164 |
| abstract_inverted_index.our | 139 |
| abstract_inverted_index.the | 5, 26, 94, 106, 119, 123, 133 |
| abstract_inverted_index.(for | 76, 87 |
| abstract_inverted_index.This | 117 |
| abstract_inverted_index.case | 120 |
| abstract_inverted_index.end, | 58 |
| abstract_inverted_index.even | 121 |
| abstract_inverted_index.find | 180 |
| abstract_inverted_index.four | 63 |
| abstract_inverted_index.good | 109 |
| abstract_inverted_index.like | 159 |
| abstract_inverted_index.real | 27 |
| abstract_inverted_index.safe | 11 |
| abstract_inverted_index.show | 72 |
| abstract_inverted_index.that | 65, 73 |
| abstract_inverted_index.then | 71 |
| abstract_inverted_index.this | 35, 57 |
| abstract_inverted_index.when | 81 |
| abstract_inverted_index.with | 83 |
| abstract_inverted_index.While | 157 |
| abstract_inverted_index.agent | 131 |
| abstract_inverted_index.allow | 10 |
| abstract_inverted_index.apply | 22 |
| abstract_inverted_index.cause | 93 |
| abstract_inverted_index.could | 66 |
| abstract_inverted_index.focus | 38 |
| abstract_inverted_index.model | 107 |
| abstract_inverted_index.other | 47, 104 |
| abstract_inverted_index.ought | 2 |
| abstract_inverted_index.range | 152 |
| abstract_inverted_index.some, | 158 |
| abstract_inverted_index.these | 74 |
| abstract_inverted_index.affect | 67 |
| abstract_inverted_index.behind | 132 |
| abstract_inverted_index.benign | 110 |
| abstract_inverted_index.curve) | 90 |
| abstract_inverted_index.during | 91 |
| abstract_inverted_index.enable | 165 |
| abstract_inverted_index.fields | 48 |
| abstract_inverted_index.manual | 177 |
| abstract_inverted_index.model. | 102 |
| abstract_inverted_index.output | 86, 96 |
| abstract_inverted_index.paper, | 36 |
| abstract_inverted_index.simple | 160 |
| abstract_inverted_index.target | 134 |
| abstract_inverted_index.threat | 44 |
| abstract_inverted_index.within | 144 |
| abstract_inverted_index.words, | 105 |
| abstract_inverted_index.world, | 28 |
| abstract_inverted_index.against | 155 |
| abstract_inverted_index.agents' | 7 |
| abstract_inverted_index.becomes | 30 |
| abstract_inverted_index.braking | 79 |
| abstract_inverted_index.checks, | 162 |
| abstract_inverted_index.complex | 16 |
| abstract_inverted_index.desired | 85, 95 |
| abstract_inverted_index.models. | 147 |
| abstract_inverted_index.offroad | 161 |
| abstract_inverted_index.predict | 4 |
| abstract_inverted_index.reveals | 141 |
| abstract_inverted_index.support | 176 |
| abstract_inverted_index.traffic | 17 |
| abstract_inverted_index.trigger | 124 |
| abstract_inverted_index.Finally, | 148 |
| abstract_inverted_index.analysis | 140 |
| abstract_inverted_index.concern. | 33 |
| abstract_inverted_index.defenses | 154 |
| abstract_inverted_index.describe | 60 |
| abstract_inverted_index.evaluate | 150 |
| abstract_inverted_index.example, | 77, 88 |
| abstract_inverted_index.maneuver | 125 |
| abstract_inverted_index.relevant | 32 |
| abstract_inverted_index.security | 29, 43 |
| abstract_inverted_index.triggers | 64, 75 |
| abstract_inverted_index.vehicle. | 135 |
| abstract_inverted_index.vehicles | 1 |
| abstract_inverted_index.backdoors | 40 |
| abstract_inverted_index.candidate | 174 |
| abstract_inverted_index.companies | 20 |
| abstract_inverted_index.detection | 166 |
| abstract_inverted_index.maneuvers | 12 |
| abstract_inverted_index.performed | 127 |
| abstract_inverted_index.promising | 173 |
| abstract_inverted_index.training, | 92 |
| abstract_inverted_index.triggers, | 169 |
| abstract_inverted_index.uncertain | 14 |
| abstract_inverted_index.vehicle), | 80 |
| abstract_inverted_index.Autonomous | 0 |
| abstract_inverted_index.backdoors. | 116, 156, 181 |
| abstract_inverted_index.clustering | 170 |
| abstract_inverted_index.correlated | 82 |
| abstract_inverted_index.inspection | 178 |
| abstract_inverted_index.non-casual | 130 |
| abstract_inverted_index.overlooked | 52 |
| abstract_inverted_index.prediction | 24, 101, 146 |
| abstract_inverted_index.trajectory | 23, 54, 68, 100, 145 |
| abstract_inverted_index.vulnerable | 114 |
| abstract_inverted_index.interesting | 142 |
| abstract_inverted_index.investigate | 62 |
| abstract_inverted_index.limitations | 143 |
| abstract_inverted_index.performance | 111 |
| abstract_inverted_index.prediction. | 55, 69 |
| abstract_inverted_index.situations. | 18 |
| abstract_inverted_index.surrounding | 6 |
| abstract_inverted_index.acknowledged | 45 |
| abstract_inverted_index.increasingly | 21 |
| abstract_inverted_index.side-effect, | 138 |
| abstract_inverted_index.trajectories | 8 |
| abstract_inverted_index.state-of-the-art | 99 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 6 |
| citation_normalized_percentile |