Mapping Leaf Area Index With a Smartphone and Gaussian Processes Article Swipe
YOU?
·
· 2015
· Open Access
·
· DOI: https://doi.org/10.1109/lgrs.2015.2488682
Leaf area index (LAI) is a key biophysical parameter used to determine\nfoliage cover and crop growth in environmental studies. Smartphones are\nnowadays ubiquitous sensor devices with high computational power, moderate\ncost, and high-quality sensors. A smartphone app, called PocketLAI, was\nrecently presented and tested for acquiring ground LAI estimates. In this\nletter, we explore the use of state-of-the-art nonlinear Gaussian process\nregression (GPR) to derive spatially explicit LAI estimates over rice using\nground data from PocketLAI and Landsat 8 imagery. GPR has gained popularity in\nrecent years because of their solid Bayesian foundations that offers not only\nhigh accuracy but also confidence intervals for the retrievals. We show the\nfirst LAI maps obtained with ground data from a smartphone combined with\nadvanced machine learning. This work compares LAI predictions and confidence\nintervals of the retrievals obtained with PocketLAI to those obtained with\nclassical instruments, such as digital hemispheric photography (DHP) and LI-COR\nLAI-2000. This letter shows that all three instruments got comparable result\nbut the PocketLAI is far cheaper. The proposed methodology hence opens a wide\nrange of possible applications at moderate cost.\n
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1109/lgrs.2015.2488682
- OA Status
- green
- Cited By
- 30
- References
- 22
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W2010423750
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W2010423750Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1109/lgrs.2015.2488682Digital Object Identifier
- Title
-
Mapping Leaf Area Index With a Smartphone and Gaussian ProcessesWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2015Year of publication
- Publication date
-
2015-10-30Full publication date if available
- Authors
-
Manuel Campos‐Taberner, Francisco Javier Garcı́a-Haro, Álvaro Moreno‐Martínez, María Amparo Gilabert Navarro, Sergio Sánchez-Ruíz, Beatriz Martínez, Gustau Camps‐VallsList of authors in order
- Landing page
-
https://doi.org/10.1109/lgrs.2015.2488682Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2012.04596Direct OA link when available
- Concepts
-
Leaf area index, Remote sensing, Computer science, Ground-penetrating radar, Gaussian process, Kriging, Range (aeronautics), Bayesian probability, Bayesian optimization, Gaussian, Environmental science, Artificial intelligence, Machine learning, Radar, Geography, Telecommunications, Biology, Physics, Ecology, Composite material, Materials science, Quantum mechanicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
30Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1, 2022: 4, 2021: 3, 2020: 3, 2019: 1Per-year citation counts (last 5 years)
- References (count)
-
22Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W2010423750 |
|---|---|
| doi | https://doi.org/10.1109/lgrs.2015.2488682 |
| ids.doi | https://doi.org/10.1109/lgrs.2015.2488682 |
| ids.mag | 2010423750 |
| ids.openalex | https://openalex.org/W2010423750 |
| fwci | 4.27799293 |
| type | article |
| title | Mapping Leaf Area Index With a Smartphone and Gaussian Processes |
| awards[0].id | https://openalex.org/G3860097550 |
| awards[0].funder_id | https://openalex.org/F4320334960 |
| awards[0].display_name | |
| awards[0].funder_award_id | 606983 |
| awards[0].funder_display_name | Seventh Framework Programme |
| biblio.issue | 12 |
| biblio.volume | 12 |
| biblio.last_page | 2505 |
| biblio.first_page | 2501 |
| topics[0].id | https://openalex.org/T10111 |
| topics[0].field.id | https://openalex.org/fields/23 |
| topics[0].field.display_name | Environmental Science |
| topics[0].score | 0.9988999962806702 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2303 |
| topics[0].subfield.display_name | Ecology |
| topics[0].display_name | Remote Sensing in Agriculture |
| topics[1].id | https://openalex.org/T10766 |
| topics[1].field.id | https://openalex.org/fields/23 |
| topics[1].field.display_name | Environmental Science |
| topics[1].score | 0.9850000143051147 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2305 |
| topics[1].subfield.display_name | Environmental Engineering |
| topics[1].display_name | Urban Heat Island Mitigation |
| topics[2].id | https://openalex.org/T14365 |
| topics[2].field.id | https://openalex.org/fields/11 |
| topics[2].field.display_name | Agricultural and Biological Sciences |
| topics[2].score | 0.9754999876022339 |
| topics[2].domain.id | https://openalex.org/domains/1 |
| topics[2].domain.display_name | Life Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1110 |
| topics[2].subfield.display_name | Plant Science |
| topics[2].display_name | Leaf Properties and Growth Measurement |
| funders[0].id | https://openalex.org/F4320334960 |
| funders[0].ror | https://ror.org/00k4n6c32 |
| funders[0].display_name | Seventh Framework Programme |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C25989453 |
| concepts[0].level | 2 |
| concepts[0].score | 0.770343542098999 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q446746 |
| concepts[0].display_name | Leaf area index |
| concepts[1].id | https://openalex.org/C62649853 |
| concepts[1].level | 1 |
| concepts[1].score | 0.6836063861846924 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q199687 |
| concepts[1].display_name | Remote sensing |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.6253605484962463 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C71813955 |
| concepts[3].level | 3 |
| concepts[3].score | 0.5487504601478577 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q503560 |
| concepts[3].display_name | Ground-penetrating radar |
| concepts[4].id | https://openalex.org/C61326573 |
| concepts[4].level | 3 |
| concepts[4].score | 0.5296877026557922 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q1496376 |
| concepts[4].display_name | Gaussian process |
| concepts[5].id | https://openalex.org/C81692654 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5147783756256104 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q225926 |
| concepts[5].display_name | Kriging |
| concepts[6].id | https://openalex.org/C204323151 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4716604948043823 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q905424 |
| concepts[6].display_name | Range (aeronautics) |
| concepts[7].id | https://openalex.org/C107673813 |
| concepts[7].level | 2 |
| concepts[7].score | 0.46563711762428284 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q812534 |
| concepts[7].display_name | Bayesian probability |
| concepts[8].id | https://openalex.org/C2778049539 |
| concepts[8].level | 2 |
| concepts[8].score | 0.42782387137413025 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q17002908 |
| concepts[8].display_name | Bayesian optimization |
| concepts[9].id | https://openalex.org/C163716315 |
| concepts[9].level | 2 |
| concepts[9].score | 0.4052037000656128 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q901177 |
| concepts[9].display_name | Gaussian |
| concepts[10].id | https://openalex.org/C39432304 |
| concepts[10].level | 0 |
| concepts[10].score | 0.3396930694580078 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q188847 |
| concepts[10].display_name | Environmental science |
| concepts[11].id | https://openalex.org/C154945302 |
| concepts[11].level | 1 |
| concepts[11].score | 0.3117586672306061 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[11].display_name | Artificial intelligence |
| concepts[12].id | https://openalex.org/C119857082 |
| concepts[12].level | 1 |
| concepts[12].score | 0.2965056300163269 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[12].display_name | Machine learning |
| concepts[13].id | https://openalex.org/C554190296 |
| concepts[13].level | 2 |
| concepts[13].score | 0.18661201000213623 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q47528 |
| concepts[13].display_name | Radar |
| concepts[14].id | https://openalex.org/C205649164 |
| concepts[14].level | 0 |
| concepts[14].score | 0.18085423111915588 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[14].display_name | Geography |
| concepts[15].id | https://openalex.org/C76155785 |
| concepts[15].level | 1 |
| concepts[15].score | 0.10090267658233643 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q418 |
| concepts[15].display_name | Telecommunications |
| concepts[16].id | https://openalex.org/C86803240 |
| concepts[16].level | 0 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[16].display_name | Biology |
| concepts[17].id | https://openalex.org/C121332964 |
| concepts[17].level | 0 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[17].display_name | Physics |
| concepts[18].id | https://openalex.org/C18903297 |
| concepts[18].level | 1 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q7150 |
| concepts[18].display_name | Ecology |
| concepts[19].id | https://openalex.org/C159985019 |
| concepts[19].level | 1 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q181790 |
| concepts[19].display_name | Composite material |
| concepts[20].id | https://openalex.org/C192562407 |
| concepts[20].level | 0 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q228736 |
| concepts[20].display_name | Materials science |
| concepts[21].id | https://openalex.org/C62520636 |
| concepts[21].level | 1 |
| concepts[21].score | 0.0 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[21].display_name | Quantum mechanics |
| keywords[0].id | https://openalex.org/keywords/leaf-area-index |
| keywords[0].score | 0.770343542098999 |
| keywords[0].display_name | Leaf area index |
| keywords[1].id | https://openalex.org/keywords/remote-sensing |
| keywords[1].score | 0.6836063861846924 |
| keywords[1].display_name | Remote sensing |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.6253605484962463 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/ground-penetrating-radar |
| keywords[3].score | 0.5487504601478577 |
| keywords[3].display_name | Ground-penetrating radar |
| keywords[4].id | https://openalex.org/keywords/gaussian-process |
| keywords[4].score | 0.5296877026557922 |
| keywords[4].display_name | Gaussian process |
| keywords[5].id | https://openalex.org/keywords/kriging |
| keywords[5].score | 0.5147783756256104 |
| keywords[5].display_name | Kriging |
| keywords[6].id | https://openalex.org/keywords/range |
| keywords[6].score | 0.4716604948043823 |
| keywords[6].display_name | Range (aeronautics) |
| keywords[7].id | https://openalex.org/keywords/bayesian-probability |
| keywords[7].score | 0.46563711762428284 |
| keywords[7].display_name | Bayesian probability |
| keywords[8].id | https://openalex.org/keywords/bayesian-optimization |
| keywords[8].score | 0.42782387137413025 |
| keywords[8].display_name | Bayesian optimization |
| keywords[9].id | https://openalex.org/keywords/gaussian |
| keywords[9].score | 0.4052037000656128 |
| keywords[9].display_name | Gaussian |
| keywords[10].id | https://openalex.org/keywords/environmental-science |
| keywords[10].score | 0.3396930694580078 |
| keywords[10].display_name | Environmental science |
| keywords[11].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[11].score | 0.3117586672306061 |
| keywords[11].display_name | Artificial intelligence |
| keywords[12].id | https://openalex.org/keywords/machine-learning |
| keywords[12].score | 0.2965056300163269 |
| keywords[12].display_name | Machine learning |
| keywords[13].id | https://openalex.org/keywords/radar |
| keywords[13].score | 0.18661201000213623 |
| keywords[13].display_name | Radar |
| keywords[14].id | https://openalex.org/keywords/geography |
| keywords[14].score | 0.18085423111915588 |
| keywords[14].display_name | Geography |
| keywords[15].id | https://openalex.org/keywords/telecommunications |
| keywords[15].score | 0.10090267658233643 |
| keywords[15].display_name | Telecommunications |
| language | en |
| locations[0].id | doi:10.1109/lgrs.2015.2488682 |
| locations[0].is_oa | False |
| locations[0].source.id | https://openalex.org/S126920919 |
| locations[0].source.issn | 1545-598X, 1558-0571 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 1545-598X |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | IEEE Geoscience and Remote Sensing Letters |
| locations[0].source.host_organization | https://openalex.org/P4310319808 |
| locations[0].source.host_organization_name | Institute of Electrical and Electronics Engineers |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319808 |
| locations[0].source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | IEEE Geoscience and Remote Sensing Letters |
| locations[0].landing_page_url | https://doi.org/10.1109/lgrs.2015.2488682 |
| locations[1].id | pmh:oai:arXiv.org:2012.04596 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | https://arxiv.org/pdf/2012.04596 |
| locations[1].version | submittedVersion |
| locations[1].raw_type | text |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | http://arxiv.org/abs/2012.04596 |
| locations[2].id | pmh:oai:zenodo.org:3454967 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S4306400562 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | True |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | Zenodo (CERN European Organization for Nuclear Research) |
| locations[2].source.host_organization | https://openalex.org/I67311998 |
| locations[2].source.host_organization_name | European Organization for Nuclear Research |
| locations[2].source.host_organization_lineage | https://openalex.org/I67311998 |
| locations[2].license | other-oa |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | info:eu-repo/semantics/article |
| locations[2].license_id | https://openalex.org/licenses/other-oa |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | |
| locations[2].landing_page_url | https://zenodo.org/record/3454967 |
| indexed_in | arxiv, crossref |
| authorships[0].author.id | https://openalex.org/A5047808140 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-5929-3942 |
| authorships[0].author.display_name | Manuel Campos‐Taberner |
| authorships[0].countries | ES |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I16097986 |
| authorships[0].affiliations[0].raw_affiliation_string | Dept. of Earth Phys. & Thermodynamics, Univ. de Valencia, València, Spain |
| authorships[0].institutions[0].id | https://openalex.org/I16097986 |
| authorships[0].institutions[0].ror | https://ror.org/043nxc105 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I16097986 |
| authorships[0].institutions[0].country_code | ES |
| authorships[0].institutions[0].display_name | Universitat de València |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Manuel Campos-Taberner |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Dept. of Earth Phys. & Thermodynamics, Univ. de Valencia, València, Spain |
| authorships[1].author.id | https://openalex.org/A5030690607 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-5888-0061 |
| authorships[1].author.display_name | Francisco Javier Garcı́a-Haro |
| authorships[1].countries | ES |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I16097986 |
| authorships[1].affiliations[0].raw_affiliation_string | Dept. of Earth Phys. & Thermodynamics, Univ. de Valencia, València, Spain |
| authorships[1].institutions[0].id | https://openalex.org/I16097986 |
| authorships[1].institutions[0].ror | https://ror.org/043nxc105 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I16097986 |
| authorships[1].institutions[0].country_code | ES |
| authorships[1].institutions[0].display_name | Universitat de València |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Franciso Javier Garcia-Haro |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Dept. of Earth Phys. & Thermodynamics, Univ. de Valencia, València, Spain |
| authorships[2].author.id | https://openalex.org/A5028819728 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-2990-7768 |
| authorships[2].author.display_name | Álvaro Moreno‐Martínez |
| authorships[2].countries | ES |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I16097986 |
| authorships[2].affiliations[0].raw_affiliation_string | Dept. of Earth Phys. & Thermodynamics, Univ. de Valencia, València, Spain |
| authorships[2].institutions[0].id | https://openalex.org/I16097986 |
| authorships[2].institutions[0].ror | https://ror.org/043nxc105 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I16097986 |
| authorships[2].institutions[0].country_code | ES |
| authorships[2].institutions[0].display_name | Universitat de València |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Alvaro Moreno |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Dept. of Earth Phys. & Thermodynamics, Univ. de Valencia, València, Spain |
| authorships[3].author.id | https://openalex.org/A5087778885 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-3548-1524 |
| authorships[3].author.display_name | María Amparo Gilabert Navarro |
| authorships[3].countries | ES |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I16097986 |
| authorships[3].affiliations[0].raw_affiliation_string | Dept. of Earth Phys. & Thermodynamics, Univ. de Valencia, València, Spain |
| authorships[3].institutions[0].id | https://openalex.org/I16097986 |
| authorships[3].institutions[0].ror | https://ror.org/043nxc105 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I16097986 |
| authorships[3].institutions[0].country_code | ES |
| authorships[3].institutions[0].display_name | Universitat de València |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Maria Amparo Gilabert |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Dept. of Earth Phys. & Thermodynamics, Univ. de Valencia, València, Spain |
| authorships[4].author.id | https://openalex.org/A5022506820 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-4849-9918 |
| authorships[4].author.display_name | Sergio Sánchez-Ruíz |
| authorships[4].countries | ES |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I16097986 |
| authorships[4].affiliations[0].raw_affiliation_string | Dept. of Earth Phys. & Thermodynamics, Univ. de Valencia, València, Spain |
| authorships[4].institutions[0].id | https://openalex.org/I16097986 |
| authorships[4].institutions[0].ror | https://ror.org/043nxc105 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I16097986 |
| authorships[4].institutions[0].country_code | ES |
| authorships[4].institutions[0].display_name | Universitat de València |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Sergio Sanchez-Ruiz |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Dept. of Earth Phys. & Thermodynamics, Univ. de Valencia, València, Spain |
| authorships[5].author.id | https://openalex.org/A5086597431 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-6354-9899 |
| authorships[5].author.display_name | Beatriz Martínez |
| authorships[5].countries | ES |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I16097986 |
| authorships[5].affiliations[0].raw_affiliation_string | Dept. of Earth Phys. & Thermodynamics, Univ. de Valencia, València, Spain |
| authorships[5].institutions[0].id | https://openalex.org/I16097986 |
| authorships[5].institutions[0].ror | https://ror.org/043nxc105 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I16097986 |
| authorships[5].institutions[0].country_code | ES |
| authorships[5].institutions[0].display_name | Universitat de València |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Beatriz Martinez |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Dept. of Earth Phys. & Thermodynamics, Univ. de Valencia, València, Spain |
| authorships[6].author.id | https://openalex.org/A5039052506 |
| authorships[6].author.orcid | https://orcid.org/0000-0003-1683-2138 |
| authorships[6].author.display_name | Gustau Camps‐Valls |
| authorships[6].countries | ES |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I16097986 |
| authorships[6].affiliations[0].raw_affiliation_string | Image Process. Lab., Univ. de Valencia, València, Spain |
| authorships[6].institutions[0].id | https://openalex.org/I16097986 |
| authorships[6].institutions[0].ror | https://ror.org/043nxc105 |
| authorships[6].institutions[0].type | education |
| authorships[6].institutions[0].lineage | https://openalex.org/I16097986 |
| authorships[6].institutions[0].country_code | ES |
| authorships[6].institutions[0].display_name | Universitat de València |
| authorships[6].author_position | last |
| authorships[6].raw_author_name | Gustau Camps-Valls |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | Image Process. Lab., Univ. de Valencia, València, Spain |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2012.04596 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Mapping Leaf Area Index With a Smartphone and Gaussian Processes |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10111 |
| primary_topic.field.id | https://openalex.org/fields/23 |
| primary_topic.field.display_name | Environmental Science |
| primary_topic.score | 0.9988999962806702 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2303 |
| primary_topic.subfield.display_name | Ecology |
| primary_topic.display_name | Remote Sensing in Agriculture |
| related_works | https://openalex.org/W3104422856, https://openalex.org/W4206864338, https://openalex.org/W566010457, https://openalex.org/W4287867179, https://openalex.org/W2600092203, https://openalex.org/W4300066510, https://openalex.org/W3134690064, https://openalex.org/W4210726438, https://openalex.org/W2056958800, https://openalex.org/W2803685231 |
| cited_by_count | 30 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2022 |
| counts_by_year[1].cited_by_count | 4 |
| counts_by_year[2].year | 2021 |
| counts_by_year[2].cited_by_count | 3 |
| counts_by_year[3].year | 2020 |
| counts_by_year[3].cited_by_count | 3 |
| counts_by_year[4].year | 2019 |
| counts_by_year[4].cited_by_count | 1 |
| counts_by_year[5].year | 2018 |
| counts_by_year[5].cited_by_count | 7 |
| counts_by_year[6].year | 2017 |
| counts_by_year[6].cited_by_count | 8 |
| counts_by_year[7].year | 2016 |
| counts_by_year[7].cited_by_count | 3 |
| locations_count | 3 |
| best_oa_location.id | pmh:oai:arXiv.org:2012.04596 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2012.04596 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2012.04596 |
| primary_location.id | doi:10.1109/lgrs.2015.2488682 |
| primary_location.is_oa | False |
| primary_location.source.id | https://openalex.org/S126920919 |
| primary_location.source.issn | 1545-598X, 1558-0571 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 1545-598X |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | IEEE Geoscience and Remote Sensing Letters |
| primary_location.source.host_organization | https://openalex.org/P4310319808 |
| primary_location.source.host_organization_name | Institute of Electrical and Electronics Engineers |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319808 |
| primary_location.source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | IEEE Geoscience and Remote Sensing Letters |
| primary_location.landing_page_url | https://doi.org/10.1109/lgrs.2015.2488682 |
| publication_date | 2015-10-30 |
| publication_year | 2015 |
| referenced_works | https://openalex.org/W1560724230, https://openalex.org/W2118955589, https://openalex.org/W1974914315, https://openalex.org/W1988510559, https://openalex.org/W1977290837, https://openalex.org/W1986812364, https://openalex.org/W1970025410, https://openalex.org/W2167881994, https://openalex.org/W1982818815, https://openalex.org/W2056069225, https://openalex.org/W2001474955, https://openalex.org/W2085216308, https://openalex.org/W2130670721, https://openalex.org/W4211171471, https://openalex.org/W2116635928, https://openalex.org/W2151647593, https://openalex.org/W2027331474, https://openalex.org/W2124776405, https://openalex.org/W2143789670, https://openalex.org/W3195149063, https://openalex.org/W4376463272, https://openalex.org/W4211049957 |
| referenced_works_count | 22 |
| abstract_inverted_index.8 | 72 |
| abstract_inverted_index.A | 32 |
| abstract_inverted_index.a | 5, 108, 160 |
| abstract_inverted_index.In | 46 |
| abstract_inverted_index.We | 98 |
| abstract_inverted_index.as | 133 |
| abstract_inverted_index.at | 165 |
| abstract_inverted_index.in | 16 |
| abstract_inverted_index.is | 4, 152 |
| abstract_inverted_index.of | 52, 81, 121, 162 |
| abstract_inverted_index.to | 10, 58, 127 |
| abstract_inverted_index.we | 48 |
| abstract_inverted_index.GPR | 74 |
| abstract_inverted_index.LAI | 44, 62, 101, 117 |
| abstract_inverted_index.The | 155 |
| abstract_inverted_index.all | 144 |
| abstract_inverted_index.and | 13, 29, 39, 70, 119, 138 |
| abstract_inverted_index.but | 91 |
| abstract_inverted_index.far | 153 |
| abstract_inverted_index.for | 41, 95 |
| abstract_inverted_index.got | 147 |
| abstract_inverted_index.has | 75 |
| abstract_inverted_index.key | 6 |
| abstract_inverted_index.not | 88 |
| abstract_inverted_index.the | 50, 96, 122, 150 |
| abstract_inverted_index.use | 51 |
| abstract_inverted_index.Leaf | 0 |
| abstract_inverted_index.This | 114, 140 |
| abstract_inverted_index.also | 92 |
| abstract_inverted_index.app, | 34 |
| abstract_inverted_index.area | 1 |
| abstract_inverted_index.crop | 14 |
| abstract_inverted_index.data | 67, 106 |
| abstract_inverted_index.from | 68, 107 |
| abstract_inverted_index.high | 25 |
| abstract_inverted_index.maps | 102 |
| abstract_inverted_index.over | 64 |
| abstract_inverted_index.rice | 65 |
| abstract_inverted_index.show | 99 |
| abstract_inverted_index.such | 132 |
| abstract_inverted_index.that | 86, 143 |
| abstract_inverted_index.used | 9 |
| abstract_inverted_index.with | 24, 104, 125 |
| abstract_inverted_index.work | 115 |
| abstract_inverted_index.(DHP) | 137 |
| abstract_inverted_index.(GPR) | 57 |
| abstract_inverted_index.(LAI) | 3 |
| abstract_inverted_index.cover | 12 |
| abstract_inverted_index.hence | 158 |
| abstract_inverted_index.index | 2 |
| abstract_inverted_index.opens | 159 |
| abstract_inverted_index.shows | 142 |
| abstract_inverted_index.solid | 83 |
| abstract_inverted_index.their | 82 |
| abstract_inverted_index.those | 128 |
| abstract_inverted_index.three | 145 |
| abstract_inverted_index.years | 79 |
| abstract_inverted_index.called | 35 |
| abstract_inverted_index.derive | 59 |
| abstract_inverted_index.gained | 76 |
| abstract_inverted_index.ground | 43, 105 |
| abstract_inverted_index.growth | 15 |
| abstract_inverted_index.letter | 141 |
| abstract_inverted_index.offers | 87 |
| abstract_inverted_index.power, | 27 |
| abstract_inverted_index.sensor | 22 |
| abstract_inverted_index.tested | 40 |
| abstract_inverted_index.Landsat | 71 |
| abstract_inverted_index.because | 80 |
| abstract_inverted_index.cost.\n | 167 |
| abstract_inverted_index.devices | 23 |
| abstract_inverted_index.digital | 134 |
| abstract_inverted_index.explore | 49 |
| abstract_inverted_index.machine | 112 |
| abstract_inverted_index.Bayesian | 84 |
| abstract_inverted_index.Gaussian | 55 |
| abstract_inverted_index.accuracy | 90 |
| abstract_inverted_index.cheaper. | 154 |
| abstract_inverted_index.combined | 110 |
| abstract_inverted_index.compares | 116 |
| abstract_inverted_index.explicit | 61 |
| abstract_inverted_index.imagery. | 73 |
| abstract_inverted_index.moderate | 166 |
| abstract_inverted_index.obtained | 103, 124, 129 |
| abstract_inverted_index.possible | 163 |
| abstract_inverted_index.proposed | 156 |
| abstract_inverted_index.sensors. | 31 |
| abstract_inverted_index.studies. | 18 |
| abstract_inverted_index.PocketLAI | 69, 126, 151 |
| abstract_inverted_index.acquiring | 42 |
| abstract_inverted_index.estimates | 63 |
| abstract_inverted_index.intervals | 94 |
| abstract_inverted_index.learning. | 113 |
| abstract_inverted_index.nonlinear | 54 |
| abstract_inverted_index.parameter | 8 |
| abstract_inverted_index.presented | 38 |
| abstract_inverted_index.spatially | 60 |
| abstract_inverted_index.PocketLAI, | 36 |
| abstract_inverted_index.comparable | 148 |
| abstract_inverted_index.confidence | 93 |
| abstract_inverted_index.estimates. | 45 |
| abstract_inverted_index.in\nrecent | 78 |
| abstract_inverted_index.only\nhigh | 89 |
| abstract_inverted_index.popularity | 77 |
| abstract_inverted_index.retrievals | 123 |
| abstract_inverted_index.smartphone | 33, 109 |
| abstract_inverted_index.the\nfirst | 100 |
| abstract_inverted_index.ubiquitous | 21 |
| abstract_inverted_index.Smartphones | 19 |
| abstract_inverted_index.biophysical | 7 |
| abstract_inverted_index.foundations | 85 |
| abstract_inverted_index.hemispheric | 135 |
| abstract_inverted_index.instruments | 146 |
| abstract_inverted_index.methodology | 157 |
| abstract_inverted_index.photography | 136 |
| abstract_inverted_index.predictions | 118 |
| abstract_inverted_index.result\nbut | 149 |
| abstract_inverted_index.retrievals. | 97 |
| abstract_inverted_index.wide\nrange | 161 |
| abstract_inverted_index.applications | 164 |
| abstract_inverted_index.high-quality | 30 |
| abstract_inverted_index.instruments, | 131 |
| abstract_inverted_index.are\nnowadays | 20 |
| abstract_inverted_index.computational | 26 |
| abstract_inverted_index.environmental | 17 |
| abstract_inverted_index.this\nletter, | 47 |
| abstract_inverted_index.using\nground | 66 |
| abstract_inverted_index.was\nrecently | 37 |
| abstract_inverted_index.with\nadvanced | 111 |
| abstract_inverted_index.moderate\ncost, | 28 |
| abstract_inverted_index.with\nclassical | 130 |
| abstract_inverted_index.state-of-the-art | 53 |
| abstract_inverted_index.LI-COR\nLAI-2000. | 139 |
| abstract_inverted_index.determine\nfoliage | 11 |
| abstract_inverted_index.process\nregression | 56 |
| abstract_inverted_index.confidence\nintervals | 120 |
| cited_by_percentile_year.max | 99 |
| cited_by_percentile_year.min | 90 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 7 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/15 |
| sustainable_development_goals[0].score | 0.5400000214576721 |
| sustainable_development_goals[0].display_name | Life in Land |
| citation_normalized_percentile.value | 0.9569378 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |