Mapping the Timescale Organization of Neural Language Models Article Swipe
YOU?
·
· 2020
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2012.06717
In the human brain, sequences of language input are processed within a distributed and hierarchical architecture, in which higher stages of processing encode contextual information over longer timescales. In contrast, in recurrent neural networks which perform natural language processing, we know little about how the multiple timescales of contextual information are functionally organized. Therefore, we applied tools developed in neuroscience to map the "processing timescales" of individual units within a word-level LSTM language model. This timescale-mapping method assigned long timescales to units previously found to track long-range syntactic dependencies. Additionally, the mapping revealed a small subset of the network (less than 15% of units) with long timescales and whose function had not previously been explored. We next probed the functional organization of the network by examining the relationship between the processing timescale of units and their network connectivity. We identified two classes of long-timescale units: "controller" units composed a densely interconnected subnetwork and strongly projected to the rest of the network, while "integrator" units showed the longest timescales in the network, and expressed projection profiles closer to the mean projection profile. Ablating integrator and controller units affected model performance at different positions within a sentence, suggesting distinctive functions of these two sets of units. Finally, we tested the generalization of these results to a character-level LSTM model and models with different architectures. In summary, we demonstrated a model-free technique for mapping the timescale organization in recurrent neural networks, and we applied this method to reveal the timescale and functional organization of neural language models.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- http://arxiv.org/abs/2012.06717
- https://arxiv.org/pdf/2012.06717
- OA Status
- green
- Cited By
- 1
- References
- 16
- Related Works
- 20
- OpenAlex ID
- https://openalex.org/W3112986129
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3112986129Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2012.06717Digital Object Identifier
- Title
-
Mapping the Timescale Organization of Neural Language ModelsWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2020Year of publication
- Publication date
-
2020-12-12Full publication date if available
- Authors
-
Hsiang-Yun Sherry Chien, Jinhan Zhang, Christopher J. HoneyList of authors in order
- Landing page
-
https://arxiv.org/abs/2012.06717Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2012.06717Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2012.06717Direct OA link when available
- Concepts
-
Computer science, Sentence, Subnetwork, Language model, Artificial intelligence, Projection (relational algebra), ENCODE, Artificial neural network, Natural language processing, Generalization, Word (group theory), Algorithm, Mathematics, Philosophy, Chemistry, Linguistics, Mathematical analysis, Gene, Computer security, BiochemistryTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2023: 1Per-year citation counts (last 5 years)
- References (count)
-
16Number of works referenced by this work
- Related works (count)
-
20Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3112986129 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2012.06717 |
| ids.doi | https://doi.org/10.48550/arxiv.2012.06717 |
| ids.mag | 3112986129 |
| ids.openalex | https://openalex.org/W3112986129 |
| fwci | |
| type | article |
| title | Mapping the Timescale Organization of Neural Language Models |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10028 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9995999932289124 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Topic Modeling |
| topics[1].id | https://openalex.org/T10181 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9959999918937683 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Natural Language Processing Techniques |
| topics[2].id | https://openalex.org/T12808 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9940000176429749 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2208 |
| topics[2].subfield.display_name | Electrical and Electronic Engineering |
| topics[2].display_name | Ferroelectric and Negative Capacitance Devices |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.7534616589546204 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C2777530160 |
| concepts[1].level | 2 |
| concepts[1].score | 0.5912678837776184 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q41796 |
| concepts[1].display_name | Sentence |
| concepts[2].id | https://openalex.org/C2780186347 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5880112648010254 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11414 |
| concepts[2].display_name | Subnetwork |
| concepts[3].id | https://openalex.org/C137293760 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5808585286140442 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q3621696 |
| concepts[3].display_name | Language model |
| concepts[4].id | https://openalex.org/C154945302 |
| concepts[4].level | 1 |
| concepts[4].score | 0.5323066711425781 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[4].display_name | Artificial intelligence |
| concepts[5].id | https://openalex.org/C57493831 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5076521635055542 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q3134666 |
| concepts[5].display_name | Projection (relational algebra) |
| concepts[6].id | https://openalex.org/C66746571 |
| concepts[6].level | 3 |
| concepts[6].score | 0.49250826239585876 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q1134833 |
| concepts[6].display_name | ENCODE |
| concepts[7].id | https://openalex.org/C50644808 |
| concepts[7].level | 2 |
| concepts[7].score | 0.48323187232017517 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[7].display_name | Artificial neural network |
| concepts[8].id | https://openalex.org/C204321447 |
| concepts[8].level | 1 |
| concepts[8].score | 0.47463902831077576 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q30642 |
| concepts[8].display_name | Natural language processing |
| concepts[9].id | https://openalex.org/C177148314 |
| concepts[9].level | 2 |
| concepts[9].score | 0.44901204109191895 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q170084 |
| concepts[9].display_name | Generalization |
| concepts[10].id | https://openalex.org/C90805587 |
| concepts[10].level | 2 |
| concepts[10].score | 0.4487175941467285 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q10944557 |
| concepts[10].display_name | Word (group theory) |
| concepts[11].id | https://openalex.org/C11413529 |
| concepts[11].level | 1 |
| concepts[11].score | 0.14827829599380493 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[11].display_name | Algorithm |
| concepts[12].id | https://openalex.org/C33923547 |
| concepts[12].level | 0 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[12].display_name | Mathematics |
| concepts[13].id | https://openalex.org/C138885662 |
| concepts[13].level | 0 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[13].display_name | Philosophy |
| concepts[14].id | https://openalex.org/C185592680 |
| concepts[14].level | 0 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q2329 |
| concepts[14].display_name | Chemistry |
| concepts[15].id | https://openalex.org/C41895202 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q8162 |
| concepts[15].display_name | Linguistics |
| concepts[16].id | https://openalex.org/C134306372 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q7754 |
| concepts[16].display_name | Mathematical analysis |
| concepts[17].id | https://openalex.org/C104317684 |
| concepts[17].level | 2 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q7187 |
| concepts[17].display_name | Gene |
| concepts[18].id | https://openalex.org/C38652104 |
| concepts[18].level | 1 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q3510521 |
| concepts[18].display_name | Computer security |
| concepts[19].id | https://openalex.org/C55493867 |
| concepts[19].level | 1 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q7094 |
| concepts[19].display_name | Biochemistry |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.7534616589546204 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/sentence |
| keywords[1].score | 0.5912678837776184 |
| keywords[1].display_name | Sentence |
| keywords[2].id | https://openalex.org/keywords/subnetwork |
| keywords[2].score | 0.5880112648010254 |
| keywords[2].display_name | Subnetwork |
| keywords[3].id | https://openalex.org/keywords/language-model |
| keywords[3].score | 0.5808585286140442 |
| keywords[3].display_name | Language model |
| keywords[4].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[4].score | 0.5323066711425781 |
| keywords[4].display_name | Artificial intelligence |
| keywords[5].id | https://openalex.org/keywords/projection |
| keywords[5].score | 0.5076521635055542 |
| keywords[5].display_name | Projection (relational algebra) |
| keywords[6].id | https://openalex.org/keywords/encode |
| keywords[6].score | 0.49250826239585876 |
| keywords[6].display_name | ENCODE |
| keywords[7].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[7].score | 0.48323187232017517 |
| keywords[7].display_name | Artificial neural network |
| keywords[8].id | https://openalex.org/keywords/natural-language-processing |
| keywords[8].score | 0.47463902831077576 |
| keywords[8].display_name | Natural language processing |
| keywords[9].id | https://openalex.org/keywords/generalization |
| keywords[9].score | 0.44901204109191895 |
| keywords[9].display_name | Generalization |
| keywords[10].id | https://openalex.org/keywords/word |
| keywords[10].score | 0.4487175941467285 |
| keywords[10].display_name | Word (group theory) |
| keywords[11].id | https://openalex.org/keywords/algorithm |
| keywords[11].score | 0.14827829599380493 |
| keywords[11].display_name | Algorithm |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2012.06717 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2012.06717 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2012.06717 |
| locations[1].id | doi:10.48550/arxiv.2012.06717 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2012.06717 |
| locations[2].id | mag:3112986129 |
| locations[2].is_oa | False |
| locations[2].source | |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | |
| locations[2].raw_type | |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | |
| locations[2].raw_source_name | |
| locations[2].landing_page_url | |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5020008681 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Hsiang-Yun Sherry Chien |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I145311948 |
| authorships[0].affiliations[0].raw_affiliation_string | Johns Hopkins University |
| authorships[0].institutions[0].id | https://openalex.org/I145311948 |
| authorships[0].institutions[0].ror | https://ror.org/00za53h95 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I145311948 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | Johns Hopkins University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Hsiang-Yun Sherry Chien |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Johns Hopkins University |
| authorships[1].author.id | https://openalex.org/A5045217770 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-4511-8358 |
| authorships[1].author.display_name | Jinhan Zhang |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I145311948 |
| authorships[1].affiliations[0].raw_affiliation_string | Johns Hopkins University |
| authorships[1].institutions[0].id | https://openalex.org/I145311948 |
| authorships[1].institutions[0].ror | https://ror.org/00za53h95 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I145311948 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | Johns Hopkins University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Jinhan Zhang |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Johns Hopkins University |
| authorships[2].author.id | https://openalex.org/A5029077543 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-0745-5089 |
| authorships[2].author.display_name | Christopher J. Honey |
| authorships[2].countries | US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I145311948 |
| authorships[2].affiliations[0].raw_affiliation_string | Johns Hopkins University |
| authorships[2].institutions[0].id | https://openalex.org/I145311948 |
| authorships[2].institutions[0].ror | https://ror.org/00za53h95 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I145311948 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | Johns Hopkins University |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Christopher Honey |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Johns Hopkins University |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2012.06717 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Mapping the Timescale Organization of Neural Language Models |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10028 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9995999932289124 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Topic Modeling |
| related_works | https://openalex.org/W3128603001, https://openalex.org/W2963086650, https://openalex.org/W3117564721, https://openalex.org/W3213988127, https://openalex.org/W2749915133, https://openalex.org/W1507893557, https://openalex.org/W3115814279, https://openalex.org/W3203167474, https://openalex.org/W3098834053, https://openalex.org/W3084136447, https://openalex.org/W3201729310, https://openalex.org/W2912395283, https://openalex.org/W3111133652, https://openalex.org/W3161660151, https://openalex.org/W2904665662, https://openalex.org/W2972455873, https://openalex.org/W2970404015, https://openalex.org/W3081530306, https://openalex.org/W2955395817, https://openalex.org/W2742513086 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2023 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 3 |
| best_oa_location.id | pmh:oai:arXiv.org:2012.06717 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2012.06717 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2012.06717 |
| primary_location.id | pmh:oai:arXiv.org:2012.06717 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2012.06717 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2012.06717 |
| publication_date | 2020-12-12 |
| publication_year | 2020 |
| referenced_works | https://openalex.org/W1676999057, https://openalex.org/W2064675550, https://openalex.org/W2007997142, https://openalex.org/W2152009360, https://openalex.org/W3012102178, https://openalex.org/W1507893557, https://openalex.org/W2159929956, https://openalex.org/W2951682322, https://openalex.org/W2157331557, https://openalex.org/W2737989178, https://openalex.org/W2963751529, https://openalex.org/W2100145912, https://openalex.org/W2963951265, https://openalex.org/W1991825895, https://openalex.org/W3016825020, https://openalex.org/W2922523190 |
| referenced_works_count | 16 |
| abstract_inverted_index.a | 11, 69, 93, 148, 193, 213, 226 |
| abstract_inverted_index.In | 0, 28, 222 |
| abstract_inverted_index.We | 115, 138 |
| abstract_inverted_index.at | 189 |
| abstract_inverted_index.by | 124 |
| abstract_inverted_index.in | 16, 30, 58, 168, 234 |
| abstract_inverted_index.of | 5, 20, 47, 65, 96, 102, 121, 132, 142, 158, 198, 202, 209, 250 |
| abstract_inverted_index.to | 60, 80, 84, 155, 176, 212, 243 |
| abstract_inverted_index.we | 39, 54, 205, 224, 239 |
| abstract_inverted_index.15% | 101 |
| abstract_inverted_index.and | 13, 107, 134, 152, 171, 183, 217, 238, 247 |
| abstract_inverted_index.are | 8, 50 |
| abstract_inverted_index.for | 229 |
| abstract_inverted_index.had | 110 |
| abstract_inverted_index.how | 43 |
| abstract_inverted_index.map | 61 |
| abstract_inverted_index.not | 111 |
| abstract_inverted_index.the | 1, 44, 62, 90, 97, 118, 122, 126, 129, 156, 159, 165, 169, 177, 207, 231, 245 |
| abstract_inverted_index.two | 140, 200 |
| abstract_inverted_index.LSTM | 71, 215 |
| abstract_inverted_index.This | 74 |
| abstract_inverted_index.been | 113 |
| abstract_inverted_index.know | 40 |
| abstract_inverted_index.long | 78, 105 |
| abstract_inverted_index.mean | 178 |
| abstract_inverted_index.next | 116 |
| abstract_inverted_index.over | 25 |
| abstract_inverted_index.rest | 157 |
| abstract_inverted_index.sets | 201 |
| abstract_inverted_index.than | 100 |
| abstract_inverted_index.this | 241 |
| abstract_inverted_index.with | 104, 219 |
| abstract_inverted_index.(less | 99 |
| abstract_inverted_index.about | 42 |
| abstract_inverted_index.found | 83 |
| abstract_inverted_index.human | 2 |
| abstract_inverted_index.input | 7 |
| abstract_inverted_index.model | 187, 216 |
| abstract_inverted_index.small | 94 |
| abstract_inverted_index.their | 135 |
| abstract_inverted_index.these | 199, 210 |
| abstract_inverted_index.tools | 56 |
| abstract_inverted_index.track | 85 |
| abstract_inverted_index.units | 67, 81, 133, 146, 163, 185 |
| abstract_inverted_index.which | 17, 34 |
| abstract_inverted_index.while | 161 |
| abstract_inverted_index.whose | 108 |
| abstract_inverted_index.brain, | 3 |
| abstract_inverted_index.closer | 175 |
| abstract_inverted_index.encode | 22 |
| abstract_inverted_index.higher | 18 |
| abstract_inverted_index.little | 41 |
| abstract_inverted_index.longer | 26 |
| abstract_inverted_index.method | 76, 242 |
| abstract_inverted_index.model. | 73 |
| abstract_inverted_index.models | 218 |
| abstract_inverted_index.neural | 32, 236, 251 |
| abstract_inverted_index.probed | 117 |
| abstract_inverted_index.reveal | 244 |
| abstract_inverted_index.showed | 164 |
| abstract_inverted_index.stages | 19 |
| abstract_inverted_index.subset | 95 |
| abstract_inverted_index.tested | 206 |
| abstract_inverted_index.units) | 103 |
| abstract_inverted_index.units. | 203 |
| abstract_inverted_index.units: | 144 |
| abstract_inverted_index.within | 10, 68, 192 |
| abstract_inverted_index.applied | 55, 240 |
| abstract_inverted_index.between | 128 |
| abstract_inverted_index.classes | 141 |
| abstract_inverted_index.densely | 149 |
| abstract_inverted_index.longest | 166 |
| abstract_inverted_index.mapping | 91, 230 |
| abstract_inverted_index.models. | 253 |
| abstract_inverted_index.natural | 36 |
| abstract_inverted_index.network | 98, 123, 136 |
| abstract_inverted_index.perform | 35 |
| abstract_inverted_index.results | 211 |
| abstract_inverted_index.Ablating | 181 |
| abstract_inverted_index.Finally, | 204 |
| abstract_inverted_index.affected | 186 |
| abstract_inverted_index.assigned | 77 |
| abstract_inverted_index.composed | 147 |
| abstract_inverted_index.function | 109 |
| abstract_inverted_index.language | 6, 37, 72, 252 |
| abstract_inverted_index.multiple | 45 |
| abstract_inverted_index.network, | 160, 170 |
| abstract_inverted_index.networks | 33 |
| abstract_inverted_index.profile. | 180 |
| abstract_inverted_index.profiles | 174 |
| abstract_inverted_index.revealed | 92 |
| abstract_inverted_index.strongly | 153 |
| abstract_inverted_index.summary, | 223 |
| abstract_inverted_index.contrast, | 29 |
| abstract_inverted_index.developed | 57 |
| abstract_inverted_index.different | 190, 220 |
| abstract_inverted_index.examining | 125 |
| abstract_inverted_index.explored. | 114 |
| abstract_inverted_index.expressed | 172 |
| abstract_inverted_index.functions | 197 |
| abstract_inverted_index.networks, | 237 |
| abstract_inverted_index.positions | 191 |
| abstract_inverted_index.processed | 9 |
| abstract_inverted_index.projected | 154 |
| abstract_inverted_index.recurrent | 31, 235 |
| abstract_inverted_index.sentence, | 194 |
| abstract_inverted_index.sequences | 4 |
| abstract_inverted_index.syntactic | 87 |
| abstract_inverted_index.technique | 228 |
| abstract_inverted_index.timescale | 131, 232, 246 |
| abstract_inverted_index.Therefore, | 53 |
| abstract_inverted_index.contextual | 23, 48 |
| abstract_inverted_index.controller | 184 |
| abstract_inverted_index.functional | 119, 248 |
| abstract_inverted_index.identified | 139 |
| abstract_inverted_index.individual | 66 |
| abstract_inverted_index.integrator | 182 |
| abstract_inverted_index.long-range | 86 |
| abstract_inverted_index.model-free | 227 |
| abstract_inverted_index.organized. | 52 |
| abstract_inverted_index.previously | 82, 112 |
| abstract_inverted_index.processing | 21, 130 |
| abstract_inverted_index.projection | 173, 179 |
| abstract_inverted_index.subnetwork | 151 |
| abstract_inverted_index.suggesting | 195 |
| abstract_inverted_index.timescales | 46, 79, 106, 167 |
| abstract_inverted_index.word-level | 70 |
| abstract_inverted_index."processing | 63 |
| abstract_inverted_index.distinctive | 196 |
| abstract_inverted_index.distributed | 12 |
| abstract_inverted_index.information | 24, 49 |
| abstract_inverted_index.performance | 188 |
| abstract_inverted_index.processing, | 38 |
| abstract_inverted_index.timescales" | 64 |
| abstract_inverted_index.timescales. | 27 |
| abstract_inverted_index."controller" | 145 |
| abstract_inverted_index."integrator" | 162 |
| abstract_inverted_index.demonstrated | 225 |
| abstract_inverted_index.functionally | 51 |
| abstract_inverted_index.hierarchical | 14 |
| abstract_inverted_index.neuroscience | 59 |
| abstract_inverted_index.organization | 120, 233, 249 |
| abstract_inverted_index.relationship | 127 |
| abstract_inverted_index.Additionally, | 89 |
| abstract_inverted_index.architecture, | 15 |
| abstract_inverted_index.connectivity. | 137 |
| abstract_inverted_index.dependencies. | 88 |
| abstract_inverted_index.architectures. | 221 |
| abstract_inverted_index.generalization | 208 |
| abstract_inverted_index.interconnected | 150 |
| abstract_inverted_index.long-timescale | 143 |
| abstract_inverted_index.character-level | 214 |
| abstract_inverted_index.timescale-mapping | 75 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 3 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/4 |
| sustainable_development_goals[0].score | 0.7900000214576721 |
| sustainable_development_goals[0].display_name | Quality Education |
| citation_normalized_percentile |