Mapping wind erosion hazard with regression-based machine learning algorithms Article Swipe
Hamid Gholami
,
Aliakbar Mohammadifar
,
Dieu Tien Bui
,
Adrian L. Collins
·
YOU?
·
· 2020
· Open Access
·
· DOI: https://doi.org/10.1038/s41598-020-77567-0
YOU?
·
· 2020
· Open Access
·
· DOI: https://doi.org/10.1038/s41598-020-77567-0
Related Topics
Concepts
Metadata
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1038/s41598-020-77567-0
- https://www.nature.com/articles/s41598-020-77567-0.pdf
- OA Status
- gold
- Cited By
- 52
- References
- 59
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W3110386290
All OpenAlex metadata
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3110386290Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1038/s41598-020-77567-0Digital Object Identifier
- Title
-
Mapping wind erosion hazard with regression-based machine learning algorithmsWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2020Year of publication
- Publication date
-
2020-11-24Full publication date if available
- Authors
-
Hamid Gholami, Aliakbar Mohammadifar, Dieu Tien Bui, Adrian L. CollinsList of authors in order
- Landing page
-
https://doi.org/10.1038/s41598-020-77567-0Publisher landing page
- PDF URL
-
https://www.nature.com/articles/s41598-020-77567-0.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.nature.com/articles/s41598-020-77567-0.pdfDirect OA link when available
- Concepts
-
Multicollinearity, Gradient boosting, Algorithm, Machine learning, Artificial intelligence, Computer science, Artificial neural network, Linear regression, Generalized additive model, Generalized linear model, Support vector machine, Variance inflation factor, Mathematics, Statistics, Random forestTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
52Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 7, 2024: 9, 2023: 12, 2022: 10, 2021: 14Per-year citation counts (last 5 years)
- References (count)
-
59Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3110386290 |
|---|---|
| doi | https://doi.org/10.1038/s41598-020-77567-0 |
| ids.doi | https://doi.org/10.1038/s41598-020-77567-0 |
| ids.mag | 3110386290 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/33235269 |
| ids.openalex | https://openalex.org/W3110386290 |
| fwci | 7.51302235 |
| type | article |
| title | Mapping wind erosion hazard with regression-based machine learning algorithms |
| biblio.issue | 1 |
| biblio.volume | 10 |
| biblio.last_page | 20494 |
| biblio.first_page | 20494 |
| topics[0].id | https://openalex.org/T12383 |
| topics[0].field.id | https://openalex.org/fields/19 |
| topics[0].field.display_name | Earth and Planetary Sciences |
| topics[0].score | 0.9961000084877014 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1904 |
| topics[0].subfield.display_name | Earth-Surface Processes |
| topics[0].display_name | Aeolian processes and effects |
| topics[1].id | https://openalex.org/T13058 |
| topics[1].field.id | https://openalex.org/fields/23 |
| topics[1].field.display_name | Environmental Science |
| topics[1].score | 0.9782000184059143 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2308 |
| topics[1].subfield.display_name | Management, Monitoring, Policy and Law |
| topics[1].display_name | Soil and Land Suitability Analysis |
| topics[2].id | https://openalex.org/T13890 |
| topics[2].field.id | https://openalex.org/fields/19 |
| topics[2].field.display_name | Earth and Planetary Sciences |
| topics[2].score | 0.9678999781608582 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1902 |
| topics[2].subfield.display_name | Atmospheric Science |
| topics[2].display_name | Remote Sensing and Land Use |
| is_xpac | False |
| apc_list.value | 1890 |
| apc_list.currency | EUR |
| apc_list.value_usd | 2190 |
| apc_paid.value | 1890 |
| apc_paid.currency | EUR |
| apc_paid.value_usd | 2190 |
| concepts[0].id | https://openalex.org/C189285262 |
| concepts[0].level | 3 |
| concepts[0].score | 0.6543168425559998 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1332350 |
| concepts[0].display_name | Multicollinearity |
| concepts[1].id | https://openalex.org/C70153297 |
| concepts[1].level | 3 |
| concepts[1].score | 0.6402609348297119 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q5591907 |
| concepts[1].display_name | Gradient boosting |
| concepts[2].id | https://openalex.org/C11413529 |
| concepts[2].level | 1 |
| concepts[2].score | 0.544453501701355 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[2].display_name | Algorithm |
| concepts[3].id | https://openalex.org/C119857082 |
| concepts[3].level | 1 |
| concepts[3].score | 0.531633734703064 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[3].display_name | Machine learning |
| concepts[4].id | https://openalex.org/C154945302 |
| concepts[4].level | 1 |
| concepts[4].score | 0.5100160837173462 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[4].display_name | Artificial intelligence |
| concepts[5].id | https://openalex.org/C41008148 |
| concepts[5].level | 0 |
| concepts[5].score | 0.4917509853839874 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[5].display_name | Computer science |
| concepts[6].id | https://openalex.org/C50644808 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4577329456806183 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[6].display_name | Artificial neural network |
| concepts[7].id | https://openalex.org/C48921125 |
| concepts[7].level | 2 |
| concepts[7].score | 0.43386903405189514 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q10861030 |
| concepts[7].display_name | Linear regression |
| concepts[8].id | https://openalex.org/C194648359 |
| concepts[8].level | 2 |
| concepts[8].score | 0.42292702198028564 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q3318054 |
| concepts[8].display_name | Generalized additive model |
| concepts[9].id | https://openalex.org/C41587187 |
| concepts[9].level | 2 |
| concepts[9].score | 0.4212186336517334 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q1501882 |
| concepts[9].display_name | Generalized linear model |
| concepts[10].id | https://openalex.org/C12267149 |
| concepts[10].level | 2 |
| concepts[10].score | 0.4211321473121643 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q282453 |
| concepts[10].display_name | Support vector machine |
| concepts[11].id | https://openalex.org/C152732102 |
| concepts[11].level | 4 |
| concepts[11].score | 0.4100983738899231 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q13434396 |
| concepts[11].display_name | Variance inflation factor |
| concepts[12].id | https://openalex.org/C33923547 |
| concepts[12].level | 0 |
| concepts[12].score | 0.36279788613319397 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[12].display_name | Mathematics |
| concepts[13].id | https://openalex.org/C105795698 |
| concepts[13].level | 1 |
| concepts[13].score | 0.3591229021549225 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[13].display_name | Statistics |
| concepts[14].id | https://openalex.org/C169258074 |
| concepts[14].level | 2 |
| concepts[14].score | 0.3288867473602295 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q245748 |
| concepts[14].display_name | Random forest |
| keywords[0].id | https://openalex.org/keywords/multicollinearity |
| keywords[0].score | 0.6543168425559998 |
| keywords[0].display_name | Multicollinearity |
| keywords[1].id | https://openalex.org/keywords/gradient-boosting |
| keywords[1].score | 0.6402609348297119 |
| keywords[1].display_name | Gradient boosting |
| keywords[2].id | https://openalex.org/keywords/algorithm |
| keywords[2].score | 0.544453501701355 |
| keywords[2].display_name | Algorithm |
| keywords[3].id | https://openalex.org/keywords/machine-learning |
| keywords[3].score | 0.531633734703064 |
| keywords[3].display_name | Machine learning |
| keywords[4].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[4].score | 0.5100160837173462 |
| keywords[4].display_name | Artificial intelligence |
| keywords[5].id | https://openalex.org/keywords/computer-science |
| keywords[5].score | 0.4917509853839874 |
| keywords[5].display_name | Computer science |
| keywords[6].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[6].score | 0.4577329456806183 |
| keywords[6].display_name | Artificial neural network |
| keywords[7].id | https://openalex.org/keywords/linear-regression |
| keywords[7].score | 0.43386903405189514 |
| keywords[7].display_name | Linear regression |
| keywords[8].id | https://openalex.org/keywords/generalized-additive-model |
| keywords[8].score | 0.42292702198028564 |
| keywords[8].display_name | Generalized additive model |
| keywords[9].id | https://openalex.org/keywords/generalized-linear-model |
| keywords[9].score | 0.4212186336517334 |
| keywords[9].display_name | Generalized linear model |
| keywords[10].id | https://openalex.org/keywords/support-vector-machine |
| keywords[10].score | 0.4211321473121643 |
| keywords[10].display_name | Support vector machine |
| keywords[11].id | https://openalex.org/keywords/variance-inflation-factor |
| keywords[11].score | 0.4100983738899231 |
| keywords[11].display_name | Variance inflation factor |
| keywords[12].id | https://openalex.org/keywords/mathematics |
| keywords[12].score | 0.36279788613319397 |
| keywords[12].display_name | Mathematics |
| keywords[13].id | https://openalex.org/keywords/statistics |
| keywords[13].score | 0.3591229021549225 |
| keywords[13].display_name | Statistics |
| keywords[14].id | https://openalex.org/keywords/random-forest |
| keywords[14].score | 0.3288867473602295 |
| keywords[14].display_name | Random forest |
| language | en |
| locations[0].id | doi:10.1038/s41598-020-77567-0 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S196734849 |
| locations[0].source.issn | 2045-2322 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2045-2322 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Scientific Reports |
| locations[0].source.host_organization | https://openalex.org/P4310319908 |
| locations[0].source.host_organization_name | Nature Portfolio |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319908, https://openalex.org/P4310319965 |
| locations[0].source.host_organization_lineage_names | Nature Portfolio, Springer Nature |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.nature.com/articles/s41598-020-77567-0.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Scientific Reports |
| locations[0].landing_page_url | https://doi.org/10.1038/s41598-020-77567-0 |
| locations[1].id | pmid:33235269 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Scientific reports |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/33235269 |
| locations[2].id | pmh:oai:doaj.org/article:6cc90782ff3b44d1a046fcc3ff1da721 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S4306401280 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[2].source.host_organization | |
| locations[2].source.host_organization_name | |
| locations[2].license | cc-by-sa |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | article |
| locations[2].license_id | https://openalex.org/licenses/cc-by-sa |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Scientific Reports, Vol 10, Iss 1, Pp 1-16 (2020) |
| locations[2].landing_page_url | https://doaj.org/article/6cc90782ff3b44d1a046fcc3ff1da721 |
| locations[3].id | pmh:oai:pubmedcentral.nih.gov:7686346 |
| locations[3].is_oa | True |
| locations[3].source.id | https://openalex.org/S2764455111 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | False |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | PubMed Central |
| locations[3].source.host_organization | https://openalex.org/I1299303238 |
| locations[3].source.host_organization_name | National Institutes of Health |
| locations[3].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[3].license | other-oa |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | Text |
| locations[3].license_id | https://openalex.org/licenses/other-oa |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | Sci Rep |
| locations[3].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/7686346 |
| indexed_in | crossref, doaj, pubmed |
| authorships[0].author.id | https://openalex.org/A5043499560 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-7280-8880 |
| authorships[0].author.display_name | Hamid Gholami |
| authorships[0].countries | IR |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I4210088809 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Natural Resources Engineering, University of Hormozgan, Bandar-Abbas, Hormozgan, Iran |
| authorships[0].institutions[0].id | https://openalex.org/I4210088809 |
| authorships[0].institutions[0].ror | https://ror.org/003jjq839 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I4210088809 |
| authorships[0].institutions[0].country_code | IR |
| authorships[0].institutions[0].display_name | University of Hormozgan |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Hamid Gholami |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Natural Resources Engineering, University of Hormozgan, Bandar-Abbas, Hormozgan, Iran |
| authorships[1].author.id | https://openalex.org/A5054452914 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Aliakbar Mohammadifar |
| authorships[1].countries | IR |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I4210088809 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Natural Resources Engineering, University of Hormozgan, Bandar-Abbas, Hormozgan, Iran |
| authorships[1].institutions[0].id | https://openalex.org/I4210088809 |
| authorships[1].institutions[0].ror | https://ror.org/003jjq839 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I4210088809 |
| authorships[1].institutions[0].country_code | IR |
| authorships[1].institutions[0].display_name | University of Hormozgan |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Aliakbar Mohammadifar |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Natural Resources Engineering, University of Hormozgan, Bandar-Abbas, Hormozgan, Iran |
| authorships[2].author.id | https://openalex.org/A5076352077 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-5161-6479 |
| authorships[2].author.display_name | Dieu Tien Bui |
| authorships[2].countries | VN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I170238339 |
| authorships[2].affiliations[0].raw_affiliation_string | Institute of Research and Development, Duy Tan University, Da Nang, 550000, Vietnam |
| authorships[2].institutions[0].id | https://openalex.org/I170238339 |
| authorships[2].institutions[0].ror | https://ror.org/05ezss144 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I170238339 |
| authorships[2].institutions[0].country_code | VN |
| authorships[2].institutions[0].display_name | Duy Tan University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Dieu Tien Bui |
| authorships[2].is_corresponding | True |
| authorships[2].raw_affiliation_strings | Institute of Research and Development, Duy Tan University, Da Nang, 550000, Vietnam |
| authorships[3].author.id | https://openalex.org/A5068057771 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-8790-8473 |
| authorships[3].author.display_name | Adrian L. Collins |
| authorships[3].countries | GB |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I2799553609 |
| authorships[3].affiliations[0].raw_affiliation_string | Sustainable Agriculture Sciences, Rothamsted/Research, North Wyke, Okehampton, EX20 2SB, Devon, UK |
| authorships[3].institutions[0].id | https://openalex.org/I2799553609 |
| authorships[3].institutions[0].ror | https://ror.org/0347fy350 |
| authorships[3].institutions[0].type | facility |
| authorships[3].institutions[0].lineage | https://openalex.org/I2799553609, https://openalex.org/I2799693246, https://openalex.org/I4210087105 |
| authorships[3].institutions[0].country_code | GB |
| authorships[3].institutions[0].display_name | Rothamsted Research |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Adrian L. Collins |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Sustainable Agriculture Sciences, Rothamsted/Research, North Wyke, Okehampton, EX20 2SB, Devon, UK |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.nature.com/articles/s41598-020-77567-0.pdf |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Mapping wind erosion hazard with regression-based machine learning algorithms |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T12383 |
| primary_topic.field.id | https://openalex.org/fields/19 |
| primary_topic.field.display_name | Earth and Planetary Sciences |
| primary_topic.score | 0.9961000084877014 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1904 |
| primary_topic.subfield.display_name | Earth-Surface Processes |
| primary_topic.display_name | Aeolian processes and effects |
| related_works | https://openalex.org/W2586047144, https://openalex.org/W1639044165, https://openalex.org/W3016675171, https://openalex.org/W3021591465, https://openalex.org/W2242826594, https://openalex.org/W4287781063, https://openalex.org/W3036573352, https://openalex.org/W4386941098, https://openalex.org/W2082038193, https://openalex.org/W4382284687 |
| cited_by_count | 52 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 7 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 9 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 12 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 10 |
| counts_by_year[4].year | 2021 |
| counts_by_year[4].cited_by_count | 14 |
| locations_count | 4 |
| best_oa_location.id | doi:10.1038/s41598-020-77567-0 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S196734849 |
| best_oa_location.source.issn | 2045-2322 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2045-2322 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Scientific Reports |
| best_oa_location.source.host_organization | https://openalex.org/P4310319908 |
| best_oa_location.source.host_organization_name | Nature Portfolio |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310319908, https://openalex.org/P4310319965 |
| best_oa_location.source.host_organization_lineage_names | Nature Portfolio, Springer Nature |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.nature.com/articles/s41598-020-77567-0.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Scientific Reports |
| best_oa_location.landing_page_url | https://doi.org/10.1038/s41598-020-77567-0 |
| primary_location.id | doi:10.1038/s41598-020-77567-0 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S196734849 |
| primary_location.source.issn | 2045-2322 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2045-2322 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Scientific Reports |
| primary_location.source.host_organization | https://openalex.org/P4310319908 |
| primary_location.source.host_organization_name | Nature Portfolio |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319908, https://openalex.org/P4310319965 |
| primary_location.source.host_organization_lineage_names | Nature Portfolio, Springer Nature |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.nature.com/articles/s41598-020-77567-0.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Scientific Reports |
| primary_location.landing_page_url | https://doi.org/10.1038/s41598-020-77567-0 |
| publication_date | 2020-11-24 |
| publication_year | 2020 |
| referenced_works | https://openalex.org/W2054119472, https://openalex.org/W2905769569, https://openalex.org/W3077712470, https://openalex.org/W2092320890, https://openalex.org/W3012325341, https://openalex.org/W1970342637, https://openalex.org/W2981802428, https://openalex.org/W2782850090, https://openalex.org/W2898595828, https://openalex.org/W2807694716, https://openalex.org/W3044739738, https://openalex.org/W2790675133, https://openalex.org/W3025019875, https://openalex.org/W2741517055, https://openalex.org/W2121585245, https://openalex.org/W2986207493, https://openalex.org/W2917454241, https://openalex.org/W2908031888, https://openalex.org/W2567326027, https://openalex.org/W2885419738, https://openalex.org/W1584236903, https://openalex.org/W1678356000, https://openalex.org/W2070493638, https://openalex.org/W2139525108, https://openalex.org/W2792203452, https://openalex.org/W2002115844, https://openalex.org/W1898601755, https://openalex.org/W2069663627, https://openalex.org/W2489822048, https://openalex.org/W2030296667, https://openalex.org/W2144643813, https://openalex.org/W36711357, https://openalex.org/W1968433998, https://openalex.org/W2011627547, https://openalex.org/W2911964244, https://openalex.org/W2988857877, https://openalex.org/W4241653265, https://openalex.org/W2807749037, https://openalex.org/W2049324162, https://openalex.org/W2186294614, https://openalex.org/W2783455139, https://openalex.org/W2907953134, https://openalex.org/W2625912355, https://openalex.org/W2290227299, https://openalex.org/W2166163519, https://openalex.org/W2112141145, https://openalex.org/W2912599891, https://openalex.org/W4244728580, https://openalex.org/W2793717135, https://openalex.org/W2137512539, https://openalex.org/W2923299510, https://openalex.org/W2937190631, https://openalex.org/W1755117326, https://openalex.org/W2019207321, https://openalex.org/W2157355630, https://openalex.org/W2047028564, https://openalex.org/W2312977807, https://openalex.org/W1553356737, https://openalex.org/W3138518881 |
| referenced_works_count | 59 |
| abstract_inverted_index | |
| cited_by_percentile_year.max | 99 |
| cited_by_percentile_year.min | 98 |
| corresponding_author_ids | https://openalex.org/A5076352077 |
| countries_distinct_count | 3 |
| institutions_distinct_count | 4 |
| corresponding_institution_ids | https://openalex.org/I170238339 |
| citation_normalized_percentile.value | 0.98362024 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |