MAPTree: Beating "Optimal" Decision Trees with Bayesian Decision Trees Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2309.15312
Decision trees remain one of the most popular machine learning models today, largely due to their out-of-the-box performance and interpretability. In this work, we present a Bayesian approach to decision tree induction via maximum a posteriori inference of a posterior distribution over trees. We first demonstrate a connection between maximum a posteriori inference of decision trees and AND/OR search. Using this connection, we propose an AND/OR search algorithm, dubbed MAPTree, which is able to recover the maximum a posteriori tree. Lastly, we demonstrate the empirical performance of the maximum a posteriori tree both on synthetic data and in real world settings. On 16 real world datasets, MAPTree either outperforms baselines or demonstrates comparable performance but with much smaller trees. On a synthetic dataset, MAPTree also demonstrates greater robustness to noise and better generalization than existing approaches. Finally, MAPTree recovers the maxiumum a posteriori tree faster than existing sampling approaches and, in contrast with those algorithms, is able to provide a certificate of optimality. The code for our experiments is available at https://github.com/ThrunGroup/maptree.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2309.15312
- https://arxiv.org/pdf/2309.15312
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4387227465
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4387227465Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2309.15312Digital Object Identifier
- Title
-
MAPTree: Beating "Optimal" Decision Trees with Bayesian Decision TreesWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-09-26Full publication date if available
- Authors
-
Colin E. Sullivan, Mohit Tiwari, Sebastian ThrunList of authors in order
- Landing page
-
https://arxiv.org/abs/2309.15312Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2309.15312Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2309.15312Direct OA link when available
- Concepts
-
Interpretability, Computer science, Maximum a posteriori estimation, Decision tree, Machine learning, A priori and a posteriori, Inference, Bayesian probability, Robustness (evolution), Artificial intelligence, Incremental decision tree, Bayesian inference, Posterior probability, Decision tree learning, Data mining, Mathematics, Maximum likelihood, Statistics, Chemistry, Philosophy, Biochemistry, Gene, EpistemologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4387227465 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2309.15312 |
| ids.doi | https://doi.org/10.48550/arxiv.2309.15312 |
| ids.openalex | https://openalex.org/W4387227465 |
| fwci | |
| type | preprint |
| title | MAPTree: Beating "Optimal" Decision Trees with Bayesian Decision Trees |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T12026 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.996999979019165 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Explainable Artificial Intelligence (XAI) |
| topics[1].id | https://openalex.org/T11303 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.989799976348877 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Bayesian Modeling and Causal Inference |
| topics[2].id | https://openalex.org/T12535 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9879999756813049 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Machine Learning and Data Classification |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C2781067378 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6917170286178589 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q17027399 |
| concepts[0].display_name | Interpretability |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.6786044836044312 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C9810830 |
| concepts[2].level | 3 |
| concepts[2].score | 0.674397349357605 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q635384 |
| concepts[2].display_name | Maximum a posteriori estimation |
| concepts[3].id | https://openalex.org/C84525736 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6607641577720642 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q831366 |
| concepts[3].display_name | Decision tree |
| concepts[4].id | https://openalex.org/C119857082 |
| concepts[4].level | 1 |
| concepts[4].score | 0.5695927143096924 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[4].display_name | Machine learning |
| concepts[5].id | https://openalex.org/C75553542 |
| concepts[5].level | 2 |
| concepts[5].score | 0.558359682559967 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q178161 |
| concepts[5].display_name | A priori and a posteriori |
| concepts[6].id | https://openalex.org/C2776214188 |
| concepts[6].level | 2 |
| concepts[6].score | 0.554462194442749 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q408386 |
| concepts[6].display_name | Inference |
| concepts[7].id | https://openalex.org/C107673813 |
| concepts[7].level | 2 |
| concepts[7].score | 0.5135402679443359 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q812534 |
| concepts[7].display_name | Bayesian probability |
| concepts[8].id | https://openalex.org/C63479239 |
| concepts[8].level | 3 |
| concepts[8].score | 0.509870171546936 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q7353546 |
| concepts[8].display_name | Robustness (evolution) |
| concepts[9].id | https://openalex.org/C154945302 |
| concepts[9].level | 1 |
| concepts[9].score | 0.46101701259613037 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[9].display_name | Artificial intelligence |
| concepts[10].id | https://openalex.org/C10229987 |
| concepts[10].level | 4 |
| concepts[10].score | 0.44155073165893555 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q17083028 |
| concepts[10].display_name | Incremental decision tree |
| concepts[11].id | https://openalex.org/C160234255 |
| concepts[11].level | 3 |
| concepts[11].score | 0.42024335265159607 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q812535 |
| concepts[11].display_name | Bayesian inference |
| concepts[12].id | https://openalex.org/C57830394 |
| concepts[12].level | 3 |
| concepts[12].score | 0.41776180267333984 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q278079 |
| concepts[12].display_name | Posterior probability |
| concepts[13].id | https://openalex.org/C5481197 |
| concepts[13].level | 3 |
| concepts[13].score | 0.40734148025512695 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q16766476 |
| concepts[13].display_name | Decision tree learning |
| concepts[14].id | https://openalex.org/C124101348 |
| concepts[14].level | 1 |
| concepts[14].score | 0.3532070517539978 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[14].display_name | Data mining |
| concepts[15].id | https://openalex.org/C33923547 |
| concepts[15].level | 0 |
| concepts[15].score | 0.21754410862922668 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[15].display_name | Mathematics |
| concepts[16].id | https://openalex.org/C49781872 |
| concepts[16].level | 2 |
| concepts[16].score | 0.16072845458984375 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q1045555 |
| concepts[16].display_name | Maximum likelihood |
| concepts[17].id | https://openalex.org/C105795698 |
| concepts[17].level | 1 |
| concepts[17].score | 0.16028782725334167 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[17].display_name | Statistics |
| concepts[18].id | https://openalex.org/C185592680 |
| concepts[18].level | 0 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q2329 |
| concepts[18].display_name | Chemistry |
| concepts[19].id | https://openalex.org/C138885662 |
| concepts[19].level | 0 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[19].display_name | Philosophy |
| concepts[20].id | https://openalex.org/C55493867 |
| concepts[20].level | 1 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q7094 |
| concepts[20].display_name | Biochemistry |
| concepts[21].id | https://openalex.org/C104317684 |
| concepts[21].level | 2 |
| concepts[21].score | 0.0 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q7187 |
| concepts[21].display_name | Gene |
| concepts[22].id | https://openalex.org/C111472728 |
| concepts[22].level | 1 |
| concepts[22].score | 0.0 |
| concepts[22].wikidata | https://www.wikidata.org/wiki/Q9471 |
| concepts[22].display_name | Epistemology |
| keywords[0].id | https://openalex.org/keywords/interpretability |
| keywords[0].score | 0.6917170286178589 |
| keywords[0].display_name | Interpretability |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.6786044836044312 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/maximum-a-posteriori-estimation |
| keywords[2].score | 0.674397349357605 |
| keywords[2].display_name | Maximum a posteriori estimation |
| keywords[3].id | https://openalex.org/keywords/decision-tree |
| keywords[3].score | 0.6607641577720642 |
| keywords[3].display_name | Decision tree |
| keywords[4].id | https://openalex.org/keywords/machine-learning |
| keywords[4].score | 0.5695927143096924 |
| keywords[4].display_name | Machine learning |
| keywords[5].id | https://openalex.org/keywords/a-priori-and-a-posteriori |
| keywords[5].score | 0.558359682559967 |
| keywords[5].display_name | A priori and a posteriori |
| keywords[6].id | https://openalex.org/keywords/inference |
| keywords[6].score | 0.554462194442749 |
| keywords[6].display_name | Inference |
| keywords[7].id | https://openalex.org/keywords/bayesian-probability |
| keywords[7].score | 0.5135402679443359 |
| keywords[7].display_name | Bayesian probability |
| keywords[8].id | https://openalex.org/keywords/robustness |
| keywords[8].score | 0.509870171546936 |
| keywords[8].display_name | Robustness (evolution) |
| keywords[9].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[9].score | 0.46101701259613037 |
| keywords[9].display_name | Artificial intelligence |
| keywords[10].id | https://openalex.org/keywords/incremental-decision-tree |
| keywords[10].score | 0.44155073165893555 |
| keywords[10].display_name | Incremental decision tree |
| keywords[11].id | https://openalex.org/keywords/bayesian-inference |
| keywords[11].score | 0.42024335265159607 |
| keywords[11].display_name | Bayesian inference |
| keywords[12].id | https://openalex.org/keywords/posterior-probability |
| keywords[12].score | 0.41776180267333984 |
| keywords[12].display_name | Posterior probability |
| keywords[13].id | https://openalex.org/keywords/decision-tree-learning |
| keywords[13].score | 0.40734148025512695 |
| keywords[13].display_name | Decision tree learning |
| keywords[14].id | https://openalex.org/keywords/data-mining |
| keywords[14].score | 0.3532070517539978 |
| keywords[14].display_name | Data mining |
| keywords[15].id | https://openalex.org/keywords/mathematics |
| keywords[15].score | 0.21754410862922668 |
| keywords[15].display_name | Mathematics |
| keywords[16].id | https://openalex.org/keywords/maximum-likelihood |
| keywords[16].score | 0.16072845458984375 |
| keywords[16].display_name | Maximum likelihood |
| keywords[17].id | https://openalex.org/keywords/statistics |
| keywords[17].score | 0.16028782725334167 |
| keywords[17].display_name | Statistics |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2309.15312 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2309.15312 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2309.15312 |
| locations[1].id | doi:10.48550/arxiv.2309.15312 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2309.15312 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5068859532 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-2324-8055 |
| authorships[0].author.display_name | Colin E. Sullivan |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Sullivan, Colin |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5071185644 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-1836-3451 |
| authorships[1].author.display_name | Mohit Tiwari |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Tiwari, Mo |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5066710774 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Sebastian Thrun |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Thrun, Sebastian |
| authorships[2].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2309.15312 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | MAPTree: Beating "Optimal" Decision Trees with Bayesian Decision Trees |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T12026 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.996999979019165 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Explainable Artificial Intelligence (XAI) |
| related_works | https://openalex.org/W2030894524, https://openalex.org/W2012910518, https://openalex.org/W1982169401, https://openalex.org/W1648970942, https://openalex.org/W2811372817, https://openalex.org/W2070699059, https://openalex.org/W2120748120, https://openalex.org/W2545418239, https://openalex.org/W2591672004, https://openalex.org/W4243803609 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2309.15312 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2309.15312 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2309.15312 |
| primary_location.id | pmh:oai:arXiv.org:2309.15312 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2309.15312 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2309.15312 |
| publication_date | 2023-09-26 |
| publication_year | 2023 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 25, 34, 38, 46, 50, 77, 89, 120, 141, 159 |
| abstract_inverted_index.16 | 102 |
| abstract_inverted_index.In | 20 |
| abstract_inverted_index.On | 101, 119 |
| abstract_inverted_index.We | 43 |
| abstract_inverted_index.an | 64 |
| abstract_inverted_index.at | 170 |
| abstract_inverted_index.in | 97, 150 |
| abstract_inverted_index.is | 71, 155, 168 |
| abstract_inverted_index.of | 4, 37, 53, 86, 161 |
| abstract_inverted_index.on | 93 |
| abstract_inverted_index.or | 110 |
| abstract_inverted_index.to | 14, 28, 73, 128, 157 |
| abstract_inverted_index.we | 23, 62, 81 |
| abstract_inverted_index.The | 163 |
| abstract_inverted_index.and | 18, 56, 96, 130 |
| abstract_inverted_index.but | 114 |
| abstract_inverted_index.due | 13 |
| abstract_inverted_index.for | 165 |
| abstract_inverted_index.one | 3 |
| abstract_inverted_index.our | 166 |
| abstract_inverted_index.the | 5, 75, 83, 87, 139 |
| abstract_inverted_index.via | 32 |
| abstract_inverted_index.able | 72, 156 |
| abstract_inverted_index.also | 124 |
| abstract_inverted_index.and, | 149 |
| abstract_inverted_index.both | 92 |
| abstract_inverted_index.code | 164 |
| abstract_inverted_index.data | 95 |
| abstract_inverted_index.most | 6 |
| abstract_inverted_index.much | 116 |
| abstract_inverted_index.over | 41 |
| abstract_inverted_index.real | 98, 103 |
| abstract_inverted_index.than | 133, 145 |
| abstract_inverted_index.this | 21, 60 |
| abstract_inverted_index.tree | 30, 91, 143 |
| abstract_inverted_index.with | 115, 152 |
| abstract_inverted_index.Using | 59 |
| abstract_inverted_index.first | 44 |
| abstract_inverted_index.noise | 129 |
| abstract_inverted_index.their | 15 |
| abstract_inverted_index.those | 153 |
| abstract_inverted_index.tree. | 79 |
| abstract_inverted_index.trees | 1, 55 |
| abstract_inverted_index.which | 70 |
| abstract_inverted_index.work, | 22 |
| abstract_inverted_index.world | 99, 104 |
| abstract_inverted_index.AND/OR | 57, 65 |
| abstract_inverted_index.better | 131 |
| abstract_inverted_index.dubbed | 68 |
| abstract_inverted_index.either | 107 |
| abstract_inverted_index.faster | 144 |
| abstract_inverted_index.models | 10 |
| abstract_inverted_index.remain | 2 |
| abstract_inverted_index.search | 66 |
| abstract_inverted_index.today, | 11 |
| abstract_inverted_index.trees. | 42, 118 |
| abstract_inverted_index.Lastly, | 80 |
| abstract_inverted_index.MAPTree | 106, 123, 137 |
| abstract_inverted_index.between | 48 |
| abstract_inverted_index.greater | 126 |
| abstract_inverted_index.largely | 12 |
| abstract_inverted_index.machine | 8 |
| abstract_inverted_index.maximum | 33, 49, 76, 88 |
| abstract_inverted_index.popular | 7 |
| abstract_inverted_index.present | 24 |
| abstract_inverted_index.propose | 63 |
| abstract_inverted_index.provide | 158 |
| abstract_inverted_index.recover | 74 |
| abstract_inverted_index.search. | 58 |
| abstract_inverted_index.smaller | 117 |
| abstract_inverted_index.Bayesian | 26 |
| abstract_inverted_index.Decision | 0 |
| abstract_inverted_index.Finally, | 136 |
| abstract_inverted_index.MAPTree, | 69 |
| abstract_inverted_index.approach | 27 |
| abstract_inverted_index.contrast | 151 |
| abstract_inverted_index.dataset, | 122 |
| abstract_inverted_index.decision | 29, 54 |
| abstract_inverted_index.existing | 134, 146 |
| abstract_inverted_index.learning | 9 |
| abstract_inverted_index.maxiumum | 140 |
| abstract_inverted_index.recovers | 138 |
| abstract_inverted_index.sampling | 147 |
| abstract_inverted_index.available | 169 |
| abstract_inverted_index.baselines | 109 |
| abstract_inverted_index.datasets, | 105 |
| abstract_inverted_index.empirical | 84 |
| abstract_inverted_index.induction | 31 |
| abstract_inverted_index.inference | 36, 52 |
| abstract_inverted_index.posterior | 39 |
| abstract_inverted_index.settings. | 100 |
| abstract_inverted_index.synthetic | 94, 121 |
| abstract_inverted_index.algorithm, | 67 |
| abstract_inverted_index.approaches | 148 |
| abstract_inverted_index.comparable | 112 |
| abstract_inverted_index.connection | 47 |
| abstract_inverted_index.posteriori | 35, 51, 78, 90, 142 |
| abstract_inverted_index.robustness | 127 |
| abstract_inverted_index.algorithms, | 154 |
| abstract_inverted_index.approaches. | 135 |
| abstract_inverted_index.certificate | 160 |
| abstract_inverted_index.connection, | 61 |
| abstract_inverted_index.demonstrate | 45, 82 |
| abstract_inverted_index.experiments | 167 |
| abstract_inverted_index.optimality. | 162 |
| abstract_inverted_index.outperforms | 108 |
| abstract_inverted_index.performance | 17, 85, 113 |
| abstract_inverted_index.demonstrates | 111, 125 |
| abstract_inverted_index.distribution | 40 |
| abstract_inverted_index.generalization | 132 |
| abstract_inverted_index.out-of-the-box | 16 |
| abstract_inverted_index.interpretability. | 19 |
| abstract_inverted_index.https://github.com/ThrunGroup/maptree. | 171 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 3 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/16 |
| sustainable_development_goals[0].score | 0.7699999809265137 |
| sustainable_development_goals[0].display_name | Peace, Justice and strong institutions |
| citation_normalized_percentile |