MARBLE-Net: Learning to Localize in Multipath Environment with Adaptive Rainbow Beams Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2511.06971
Integrated sensing and communication (ISAC) systems demand precise and efficient target localization, a task challenged by rich multipath propagation in complex wireless environments. This paper introduces MARBLE-Net (Multipath-Aware Rainbow Beam Learning Network), a deep learning framework that jointly optimizes the analog beamforming parameters of a frequency-dependent rainbow beam and a neural localization network for high-accuracy position estimation. By treating the phase-shifter (PS) and true-time-delay (TTD) parameters as learnable weights, the system adaptively refines its sensing beam to exploit environment-specific multipath characteristics. A structured multi-stage training strategy is proposed to ensure stable convergence and effective end-to-end optimization. Simulation results show that MARBLE-Net outperforms both a fixed-beam deep learning baseline (RaiNet) and a traditional k-nearest neighbors (k-NN) method, reducing localization error by more than 50\% in a multipath-rich scene. Moreover, the results reveal a nuanced interaction with multipath propagation: while confined uni-directional multipath degrades accuracy, structured and directional multipath can be effectively exploited to achieve performance surpassing even line-of-sight (LoS) conditions.
Related Topics
- Type
- preprint
- Landing Page
- http://arxiv.org/abs/2511.06971
- https://arxiv.org/pdf/2511.06971
- OA Status
- green
- OpenAlex ID
- https://openalex.org/W4416158510
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4416158510Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2511.06971Digital Object Identifier
- Title
-
MARBLE-Net: Learning to Localize in Multipath Environment with Adaptive Rainbow BeamsWork title
- Type
-
preprintOpenAlex work type
- Publication year
-
2025Year of publication
- Publication date
-
2025-11-10Full publication date if available
- Authors
-
Yeyue Cai, Jianhua Mo, Meixia TaoList of authors in order
- Landing page
-
https://arxiv.org/abs/2511.06971Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2511.06971Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2511.06971Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W4416158510 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2511.06971 |
| ids.doi | https://doi.org/10.48550/arxiv.2511.06971 |
| ids.openalex | https://openalex.org/W4416158510 |
| fwci | |
| type | preprint |
| title | MARBLE-Net: Learning to Localize in Multipath Environment with Adaptive Rainbow Beams |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| language | |
| locations[0].id | pmh:oai:arXiv.org:2511.06971 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2511.06971 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2511.06971 |
| locations[1].id | doi:10.48550/arxiv.2511.06971 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2511.06971 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5024937914 |
| authorships[0].author.orcid | https://orcid.org/0009-0008-9496-4068 |
| authorships[0].author.display_name | Yeyue Cai |
| authorships[0].author_position | middle |
| authorships[0].raw_author_name | Cai, Yeyue |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5101648281 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-0351-8097 |
| authorships[1].author.display_name | Jianhua Mo |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | Mo, Jianhua |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5016127527 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-0799-0954 |
| authorships[2].author.display_name | Meixia Tao |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Tao, Meixia |
| authorships[2].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2511.06971 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-11-12T00:00:00 |
| display_name | MARBLE-Net: Learning to Localize in Multipath Environment with Adaptive Rainbow Beams |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-28T06:38:33.530567 |
| primary_topic | |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2511.06971 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2511.06971 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2511.06971 |
| primary_location.id | pmh:oai:arXiv.org:2511.06971 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2511.06971 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2511.06971 |
| publication_date | 2025-11-10 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.A | 81 |
| abstract_inverted_index.a | 12, 32, 44, 49, 103, 110, 124, 131 |
| abstract_inverted_index.By | 57 |
| abstract_inverted_index.as | 66 |
| abstract_inverted_index.be | 148 |
| abstract_inverted_index.by | 15, 119 |
| abstract_inverted_index.in | 19, 123 |
| abstract_inverted_index.is | 86 |
| abstract_inverted_index.of | 43 |
| abstract_inverted_index.to | 76, 88, 151 |
| abstract_inverted_index.and | 2, 8, 48, 62, 92, 109, 144 |
| abstract_inverted_index.can | 147 |
| abstract_inverted_index.for | 53 |
| abstract_inverted_index.its | 73 |
| abstract_inverted_index.the | 39, 59, 69, 128 |
| abstract_inverted_index.(PS) | 61 |
| abstract_inverted_index.50\% | 122 |
| abstract_inverted_index.Beam | 29 |
| abstract_inverted_index.This | 23 |
| abstract_inverted_index.beam | 47, 75 |
| abstract_inverted_index.both | 102 |
| abstract_inverted_index.deep | 33, 105 |
| abstract_inverted_index.even | 155 |
| abstract_inverted_index.more | 120 |
| abstract_inverted_index.rich | 16 |
| abstract_inverted_index.show | 98 |
| abstract_inverted_index.task | 13 |
| abstract_inverted_index.than | 121 |
| abstract_inverted_index.that | 36, 99 |
| abstract_inverted_index.with | 134 |
| abstract_inverted_index.(LoS) | 157 |
| abstract_inverted_index.(TTD) | 64 |
| abstract_inverted_index.error | 118 |
| abstract_inverted_index.paper | 24 |
| abstract_inverted_index.while | 137 |
| abstract_inverted_index.(ISAC) | 4 |
| abstract_inverted_index.(k-NN) | 114 |
| abstract_inverted_index.analog | 40 |
| abstract_inverted_index.demand | 6 |
| abstract_inverted_index.ensure | 89 |
| abstract_inverted_index.neural | 50 |
| abstract_inverted_index.reveal | 130 |
| abstract_inverted_index.scene. | 126 |
| abstract_inverted_index.stable | 90 |
| abstract_inverted_index.system | 70 |
| abstract_inverted_index.target | 10 |
| abstract_inverted_index.Rainbow | 28 |
| abstract_inverted_index.achieve | 152 |
| abstract_inverted_index.complex | 20 |
| abstract_inverted_index.exploit | 77 |
| abstract_inverted_index.jointly | 37 |
| abstract_inverted_index.method, | 115 |
| abstract_inverted_index.network | 52 |
| abstract_inverted_index.nuanced | 132 |
| abstract_inverted_index.precise | 7 |
| abstract_inverted_index.rainbow | 46 |
| abstract_inverted_index.refines | 72 |
| abstract_inverted_index.results | 97, 129 |
| abstract_inverted_index.sensing | 1, 74 |
| abstract_inverted_index.systems | 5 |
| abstract_inverted_index.(RaiNet) | 108 |
| abstract_inverted_index.Learning | 30 |
| abstract_inverted_index.baseline | 107 |
| abstract_inverted_index.confined | 138 |
| abstract_inverted_index.degrades | 141 |
| abstract_inverted_index.learning | 34, 106 |
| abstract_inverted_index.position | 55 |
| abstract_inverted_index.proposed | 87 |
| abstract_inverted_index.reducing | 116 |
| abstract_inverted_index.strategy | 85 |
| abstract_inverted_index.training | 84 |
| abstract_inverted_index.treating | 58 |
| abstract_inverted_index.weights, | 68 |
| abstract_inverted_index.wireless | 21 |
| abstract_inverted_index.Moreover, | 127 |
| abstract_inverted_index.Network), | 31 |
| abstract_inverted_index.accuracy, | 142 |
| abstract_inverted_index.effective | 93 |
| abstract_inverted_index.efficient | 9 |
| abstract_inverted_index.exploited | 150 |
| abstract_inverted_index.framework | 35 |
| abstract_inverted_index.k-nearest | 112 |
| abstract_inverted_index.learnable | 67 |
| abstract_inverted_index.multipath | 17, 79, 135, 140, 146 |
| abstract_inverted_index.neighbors | 113 |
| abstract_inverted_index.optimizes | 38 |
| abstract_inverted_index.Integrated | 0 |
| abstract_inverted_index.MARBLE-Net | 26, 100 |
| abstract_inverted_index.Simulation | 96 |
| abstract_inverted_index.adaptively | 71 |
| abstract_inverted_index.challenged | 14 |
| abstract_inverted_index.end-to-end | 94 |
| abstract_inverted_index.fixed-beam | 104 |
| abstract_inverted_index.introduces | 25 |
| abstract_inverted_index.parameters | 42, 65 |
| abstract_inverted_index.structured | 82, 143 |
| abstract_inverted_index.surpassing | 154 |
| abstract_inverted_index.beamforming | 41 |
| abstract_inverted_index.conditions. | 158 |
| abstract_inverted_index.convergence | 91 |
| abstract_inverted_index.directional | 145 |
| abstract_inverted_index.effectively | 149 |
| abstract_inverted_index.estimation. | 56 |
| abstract_inverted_index.interaction | 133 |
| abstract_inverted_index.multi-stage | 83 |
| abstract_inverted_index.outperforms | 101 |
| abstract_inverted_index.performance | 153 |
| abstract_inverted_index.propagation | 18 |
| abstract_inverted_index.traditional | 111 |
| abstract_inverted_index.localization | 51, 117 |
| abstract_inverted_index.propagation: | 136 |
| abstract_inverted_index.communication | 3 |
| abstract_inverted_index.environments. | 22 |
| abstract_inverted_index.high-accuracy | 54 |
| abstract_inverted_index.line-of-sight | 156 |
| abstract_inverted_index.localization, | 11 |
| abstract_inverted_index.optimization. | 95 |
| abstract_inverted_index.phase-shifter | 60 |
| abstract_inverted_index.multipath-rich | 125 |
| abstract_inverted_index.true-time-delay | 63 |
| abstract_inverted_index.uni-directional | 139 |
| abstract_inverted_index.(Multipath-Aware | 27 |
| abstract_inverted_index.characteristics. | 80 |
| abstract_inverted_index.frequency-dependent | 45 |
| abstract_inverted_index.environment-specific | 78 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 3 |
| citation_normalized_percentile |