Masked Vector Quantization Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2301.06626
Generative models with discrete latent representations have recently demonstrated an impressive ability to learn complex high-dimensional data distributions. However, their performance relies on a long sequence of tokens per instance and a large number of codebook entries, resulting in long sampling times and considerable computation to fit the categorical posterior. To address these issues, we propose the Masked Vector Quantization (MVQ) framework which increases the representational capacity of each code vector by learning mask configurations via a stochastic winner-takes-all training regime called Multiple Hypothese Dropout (MH-Dropout). On ImageNet 64$\times$64, MVQ reduces FID in existing vector quantization architectures by up to $68\%$ at 2 tokens per instance and $57\%$ at 5 tokens. These improvements widen as codebook entries is reduced and allows for $7\textit{--}45\times$ speed-up in token sampling during inference. As an additional benefit, we find that smaller latent spaces lead to MVQ identifying transferable visual representations where multiple can be smoothly combined.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2301.06626
- https://arxiv.org/pdf/2301.06626
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4317462488
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4317462488Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2301.06626Digital Object Identifier
- Title
-
Masked Vector QuantizationWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-01-16Full publication date if available
- Authors
-
David D. Nguyen, David Leibowitz, Surya Nepal, Salil S. KanhereList of authors in order
- Landing page
-
https://arxiv.org/abs/2301.06626Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2301.06626Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2301.06626Direct OA link when available
- Concepts
-
Codebook, Vector quantization, Categorical variable, Quantization (signal processing), Computer science, Inference, Dropout (neural networks), Learning vector quantization, Linde–Buzo–Gray algorithm, Computation, Security token, Leverage (statistics), Generative model, Generative grammar, Sampling (signal processing), Artificial intelligence, Algorithm, Sequence (biology), Pattern recognition (psychology), Machine learning, Computer vision, Computer security, Genetics, Biology, Filter (signal processing)Top concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4317462488 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2301.06626 |
| ids.doi | https://doi.org/10.48550/arxiv.2301.06626 |
| ids.openalex | https://openalex.org/W4317462488 |
| fwci | |
| type | preprint |
| title | Masked Vector Quantization |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10862 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9983999729156494 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | AI in cancer detection |
| topics[1].id | https://openalex.org/T10775 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9976000189781189 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1707 |
| topics[1].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[1].display_name | Generative Adversarial Networks and Image Synthesis |
| topics[2].id | https://openalex.org/T10627 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9973000288009644 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1707 |
| topics[2].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[2].display_name | Advanced Image and Video Retrieval Techniques |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C127759330 |
| concepts[0].level | 2 |
| concepts[0].score | 0.9561318159103394 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q637416 |
| concepts[0].display_name | Codebook |
| concepts[1].id | https://openalex.org/C199833920 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7161503434181213 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q612536 |
| concepts[1].display_name | Vector quantization |
| concepts[2].id | https://openalex.org/C5274069 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6916192173957825 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q2285707 |
| concepts[2].display_name | Categorical variable |
| concepts[3].id | https://openalex.org/C28855332 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6412383317947388 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q198099 |
| concepts[3].display_name | Quantization (signal processing) |
| concepts[4].id | https://openalex.org/C41008148 |
| concepts[4].level | 0 |
| concepts[4].score | 0.6315845251083374 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[4].display_name | Computer science |
| concepts[5].id | https://openalex.org/C2776214188 |
| concepts[5].level | 2 |
| concepts[5].score | 0.6293175220489502 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q408386 |
| concepts[5].display_name | Inference |
| concepts[6].id | https://openalex.org/C2776145597 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5889002084732056 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q25339462 |
| concepts[6].display_name | Dropout (neural networks) |
| concepts[7].id | https://openalex.org/C40567965 |
| concepts[7].level | 3 |
| concepts[7].score | 0.5874118208885193 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q1820283 |
| concepts[7].display_name | Learning vector quantization |
| concepts[8].id | https://openalex.org/C93372532 |
| concepts[8].level | 3 |
| concepts[8].score | 0.5795038342475891 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q6552455 |
| concepts[8].display_name | Linde–Buzo–Gray algorithm |
| concepts[9].id | https://openalex.org/C45374587 |
| concepts[9].level | 2 |
| concepts[9].score | 0.5089213848114014 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q12525525 |
| concepts[9].display_name | Computation |
| concepts[10].id | https://openalex.org/C48145219 |
| concepts[10].level | 2 |
| concepts[10].score | 0.4884868860244751 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q1335365 |
| concepts[10].display_name | Security token |
| concepts[11].id | https://openalex.org/C153083717 |
| concepts[11].level | 2 |
| concepts[11].score | 0.47907716035842896 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q6535263 |
| concepts[11].display_name | Leverage (statistics) |
| concepts[12].id | https://openalex.org/C167966045 |
| concepts[12].level | 3 |
| concepts[12].score | 0.4626380503177643 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q5532625 |
| concepts[12].display_name | Generative model |
| concepts[13].id | https://openalex.org/C39890363 |
| concepts[13].level | 2 |
| concepts[13].score | 0.460050106048584 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q36108 |
| concepts[13].display_name | Generative grammar |
| concepts[14].id | https://openalex.org/C140779682 |
| concepts[14].level | 3 |
| concepts[14].score | 0.44971784949302673 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q210868 |
| concepts[14].display_name | Sampling (signal processing) |
| concepts[15].id | https://openalex.org/C154945302 |
| concepts[15].level | 1 |
| concepts[15].score | 0.44275790452957153 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[15].display_name | Artificial intelligence |
| concepts[16].id | https://openalex.org/C11413529 |
| concepts[16].level | 1 |
| concepts[16].score | 0.43667882680892944 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[16].display_name | Algorithm |
| concepts[17].id | https://openalex.org/C2778112365 |
| concepts[17].level | 2 |
| concepts[17].score | 0.4153718948364258 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q3511065 |
| concepts[17].display_name | Sequence (biology) |
| concepts[18].id | https://openalex.org/C153180895 |
| concepts[18].level | 2 |
| concepts[18].score | 0.39256468415260315 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[18].display_name | Pattern recognition (psychology) |
| concepts[19].id | https://openalex.org/C119857082 |
| concepts[19].level | 1 |
| concepts[19].score | 0.3586028814315796 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[19].display_name | Machine learning |
| concepts[20].id | https://openalex.org/C31972630 |
| concepts[20].level | 1 |
| concepts[20].score | 0.1718980371952057 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[20].display_name | Computer vision |
| concepts[21].id | https://openalex.org/C38652104 |
| concepts[21].level | 1 |
| concepts[21].score | 0.0 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q3510521 |
| concepts[21].display_name | Computer security |
| concepts[22].id | https://openalex.org/C54355233 |
| concepts[22].level | 1 |
| concepts[22].score | 0.0 |
| concepts[22].wikidata | https://www.wikidata.org/wiki/Q7162 |
| concepts[22].display_name | Genetics |
| concepts[23].id | https://openalex.org/C86803240 |
| concepts[23].level | 0 |
| concepts[23].score | 0.0 |
| concepts[23].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[23].display_name | Biology |
| concepts[24].id | https://openalex.org/C106131492 |
| concepts[24].level | 2 |
| concepts[24].score | 0.0 |
| concepts[24].wikidata | https://www.wikidata.org/wiki/Q3072260 |
| concepts[24].display_name | Filter (signal processing) |
| keywords[0].id | https://openalex.org/keywords/codebook |
| keywords[0].score | 0.9561318159103394 |
| keywords[0].display_name | Codebook |
| keywords[1].id | https://openalex.org/keywords/vector-quantization |
| keywords[1].score | 0.7161503434181213 |
| keywords[1].display_name | Vector quantization |
| keywords[2].id | https://openalex.org/keywords/categorical-variable |
| keywords[2].score | 0.6916192173957825 |
| keywords[2].display_name | Categorical variable |
| keywords[3].id | https://openalex.org/keywords/quantization |
| keywords[3].score | 0.6412383317947388 |
| keywords[3].display_name | Quantization (signal processing) |
| keywords[4].id | https://openalex.org/keywords/computer-science |
| keywords[4].score | 0.6315845251083374 |
| keywords[4].display_name | Computer science |
| keywords[5].id | https://openalex.org/keywords/inference |
| keywords[5].score | 0.6293175220489502 |
| keywords[5].display_name | Inference |
| keywords[6].id | https://openalex.org/keywords/dropout |
| keywords[6].score | 0.5889002084732056 |
| keywords[6].display_name | Dropout (neural networks) |
| keywords[7].id | https://openalex.org/keywords/learning-vector-quantization |
| keywords[7].score | 0.5874118208885193 |
| keywords[7].display_name | Learning vector quantization |
| keywords[8].id | https://openalex.org/keywords/linde–buzo–gray-algorithm |
| keywords[8].score | 0.5795038342475891 |
| keywords[8].display_name | Linde–Buzo–Gray algorithm |
| keywords[9].id | https://openalex.org/keywords/computation |
| keywords[9].score | 0.5089213848114014 |
| keywords[9].display_name | Computation |
| keywords[10].id | https://openalex.org/keywords/security-token |
| keywords[10].score | 0.4884868860244751 |
| keywords[10].display_name | Security token |
| keywords[11].id | https://openalex.org/keywords/leverage |
| keywords[11].score | 0.47907716035842896 |
| keywords[11].display_name | Leverage (statistics) |
| keywords[12].id | https://openalex.org/keywords/generative-model |
| keywords[12].score | 0.4626380503177643 |
| keywords[12].display_name | Generative model |
| keywords[13].id | https://openalex.org/keywords/generative-grammar |
| keywords[13].score | 0.460050106048584 |
| keywords[13].display_name | Generative grammar |
| keywords[14].id | https://openalex.org/keywords/sampling |
| keywords[14].score | 0.44971784949302673 |
| keywords[14].display_name | Sampling (signal processing) |
| keywords[15].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[15].score | 0.44275790452957153 |
| keywords[15].display_name | Artificial intelligence |
| keywords[16].id | https://openalex.org/keywords/algorithm |
| keywords[16].score | 0.43667882680892944 |
| keywords[16].display_name | Algorithm |
| keywords[17].id | https://openalex.org/keywords/sequence |
| keywords[17].score | 0.4153718948364258 |
| keywords[17].display_name | Sequence (biology) |
| keywords[18].id | https://openalex.org/keywords/pattern-recognition |
| keywords[18].score | 0.39256468415260315 |
| keywords[18].display_name | Pattern recognition (psychology) |
| keywords[19].id | https://openalex.org/keywords/machine-learning |
| keywords[19].score | 0.3586028814315796 |
| keywords[19].display_name | Machine learning |
| keywords[20].id | https://openalex.org/keywords/computer-vision |
| keywords[20].score | 0.1718980371952057 |
| keywords[20].display_name | Computer vision |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2301.06626 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2301.06626 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2301.06626 |
| locations[1].id | doi:10.48550/arxiv.2301.06626 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2301.06626 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5113883562 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | David D. Nguyen |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Nguyen, David D. |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5057728240 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-7765-6364 |
| authorships[1].author.display_name | David Leibowitz |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Leibowitz, David |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5082256444 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-3289-6599 |
| authorships[2].author.display_name | Surya Nepal |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Nepal, Surya |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5059077090 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-1835-3475 |
| authorships[3].author.display_name | Salil S. Kanhere |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Kanhere, Salil S. |
| authorships[3].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2301.06626 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Masked Vector Quantization |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10862 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9983999729156494 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | AI in cancer detection |
| related_works | https://openalex.org/W2017514583, https://openalex.org/W2391875658, https://openalex.org/W2100120615, https://openalex.org/W1929869830, https://openalex.org/W2017401491, https://openalex.org/W2387054321, https://openalex.org/W2158612577, https://openalex.org/W2352648934, https://openalex.org/W2145213141, https://openalex.org/W2170599662 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2301.06626 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2301.06626 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2301.06626 |
| primary_location.id | pmh:oai:arXiv.org:2301.06626 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2301.06626 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2301.06626 |
| publication_date | 2023-01-16 |
| publication_year | 2023 |
| referenced_works_count | 0 |
| abstract_inverted_index.2 | 102 |
| abstract_inverted_index.5 | 109 |
| abstract_inverted_index.a | 23, 31, 76 |
| abstract_inverted_index.As | 129 |
| abstract_inverted_index.On | 86 |
| abstract_inverted_index.To | 50 |
| abstract_inverted_index.an | 9, 130 |
| abstract_inverted_index.as | 114 |
| abstract_inverted_index.at | 101, 108 |
| abstract_inverted_index.be | 149 |
| abstract_inverted_index.by | 71, 97 |
| abstract_inverted_index.in | 38, 92, 124 |
| abstract_inverted_index.is | 117 |
| abstract_inverted_index.of | 26, 34, 67 |
| abstract_inverted_index.on | 22 |
| abstract_inverted_index.to | 12, 45, 99, 140 |
| abstract_inverted_index.up | 98 |
| abstract_inverted_index.we | 54, 133 |
| abstract_inverted_index.FID | 91 |
| abstract_inverted_index.MVQ | 89, 141 |
| abstract_inverted_index.and | 30, 42, 106, 119 |
| abstract_inverted_index.can | 148 |
| abstract_inverted_index.fit | 46 |
| abstract_inverted_index.for | 121 |
| abstract_inverted_index.per | 28, 104 |
| abstract_inverted_index.the | 47, 56, 64 |
| abstract_inverted_index.via | 75 |
| abstract_inverted_index.code | 69 |
| abstract_inverted_index.data | 16 |
| abstract_inverted_index.each | 68 |
| abstract_inverted_index.find | 134 |
| abstract_inverted_index.have | 6 |
| abstract_inverted_index.lead | 139 |
| abstract_inverted_index.long | 24, 39 |
| abstract_inverted_index.mask | 73 |
| abstract_inverted_index.that | 135 |
| abstract_inverted_index.with | 2 |
| abstract_inverted_index.(MVQ) | 60 |
| abstract_inverted_index.These | 111 |
| abstract_inverted_index.large | 32 |
| abstract_inverted_index.learn | 13 |
| abstract_inverted_index.their | 19 |
| abstract_inverted_index.these | 52 |
| abstract_inverted_index.times | 41 |
| abstract_inverted_index.token | 125 |
| abstract_inverted_index.where | 146 |
| abstract_inverted_index.which | 62 |
| abstract_inverted_index.widen | 113 |
| abstract_inverted_index.$57\%$ | 107 |
| abstract_inverted_index.$68\%$ | 100 |
| abstract_inverted_index.Masked | 57 |
| abstract_inverted_index.Vector | 58 |
| abstract_inverted_index.allows | 120 |
| abstract_inverted_index.called | 81 |
| abstract_inverted_index.during | 127 |
| abstract_inverted_index.latent | 4, 137 |
| abstract_inverted_index.models | 1 |
| abstract_inverted_index.number | 33 |
| abstract_inverted_index.regime | 80 |
| abstract_inverted_index.relies | 21 |
| abstract_inverted_index.spaces | 138 |
| abstract_inverted_index.tokens | 27, 103 |
| abstract_inverted_index.vector | 70, 94 |
| abstract_inverted_index.visual | 144 |
| abstract_inverted_index.Dropout | 84 |
| abstract_inverted_index.ability | 11 |
| abstract_inverted_index.address | 51 |
| abstract_inverted_index.complex | 14 |
| abstract_inverted_index.entries | 116 |
| abstract_inverted_index.issues, | 53 |
| abstract_inverted_index.propose | 55 |
| abstract_inverted_index.reduced | 118 |
| abstract_inverted_index.reduces | 90 |
| abstract_inverted_index.smaller | 136 |
| abstract_inverted_index.tokens. | 110 |
| abstract_inverted_index.However, | 18 |
| abstract_inverted_index.ImageNet | 87 |
| abstract_inverted_index.Multiple | 82 |
| abstract_inverted_index.benefit, | 132 |
| abstract_inverted_index.capacity | 66 |
| abstract_inverted_index.codebook | 35, 115 |
| abstract_inverted_index.discrete | 3 |
| abstract_inverted_index.entries, | 36 |
| abstract_inverted_index.existing | 93 |
| abstract_inverted_index.instance | 29, 105 |
| abstract_inverted_index.learning | 72 |
| abstract_inverted_index.multiple | 147 |
| abstract_inverted_index.recently | 7 |
| abstract_inverted_index.sampling | 40, 126 |
| abstract_inverted_index.sequence | 25 |
| abstract_inverted_index.smoothly | 150 |
| abstract_inverted_index.speed-up | 123 |
| abstract_inverted_index.training | 79 |
| abstract_inverted_index.Hypothese | 83 |
| abstract_inverted_index.combined. | 151 |
| abstract_inverted_index.framework | 61 |
| abstract_inverted_index.increases | 63 |
| abstract_inverted_index.resulting | 37 |
| abstract_inverted_index.Generative | 0 |
| abstract_inverted_index.additional | 131 |
| abstract_inverted_index.impressive | 10 |
| abstract_inverted_index.inference. | 128 |
| abstract_inverted_index.posterior. | 49 |
| abstract_inverted_index.stochastic | 77 |
| abstract_inverted_index.categorical | 48 |
| abstract_inverted_index.computation | 44 |
| abstract_inverted_index.identifying | 142 |
| abstract_inverted_index.performance | 20 |
| abstract_inverted_index.Quantization | 59 |
| abstract_inverted_index.considerable | 43 |
| abstract_inverted_index.demonstrated | 8 |
| abstract_inverted_index.improvements | 112 |
| abstract_inverted_index.quantization | 95 |
| abstract_inverted_index.transferable | 143 |
| abstract_inverted_index.(MH-Dropout). | 85 |
| abstract_inverted_index.64$\times$64, | 88 |
| abstract_inverted_index.architectures | 96 |
| abstract_inverted_index.configurations | 74 |
| abstract_inverted_index.distributions. | 17 |
| abstract_inverted_index.representations | 5, 145 |
| abstract_inverted_index.high-dimensional | 15 |
| abstract_inverted_index.representational | 65 |
| abstract_inverted_index.winner-takes-all | 78 |
| abstract_inverted_index.$7\textit{--}45\times$ | 122 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile |