Masking the Backgrounds to Produce Object-Focused Images and Comparing that Augmentation Method to Other Methods Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.14738/tmlai.103.12245
Image augmentation is a very powerful method to expand existing image datasets. This paper presents a novel method for creating a variation of existing images, called Object-Focused Image (OFI). This is when an image includes only the labeled object and everything else is made white. This paper elaborates on the OFI approach, explores its efficiency, and compares the validation accuracy of 780 notebooks. The presented testbed makes use of a subset of ImageNet Dataset (8,000 images of 14 classes) and incorporates all available models in Keras. These 26 models are tested before augmentation and after applying 9 different categories of augmentation methods. Each of these 260 notebooks is tested in 3 different scenarios: scenario A (ImageNet weights are not used and network layers are trainable), scenario B (ImageNet weights are used and network layers are trainable) and scenario C (ImageNet weights are used and network layers are not trainable). The experiments presented in this paper show that using OFI images along with the original images can be better than other augmentation methods in 16.4% of the cases. It was also shown that OFI method could help some models learn although they could not learn when other augmentation methods were applied. The conducted experiments also proved that the Kernel filters and the color space transformations are among the best data augmentation methods.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.14738/tmlai.103.12245
- OA Status
- diamond
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4386871306
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4386871306Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.14738/tmlai.103.12245Digital Object Identifier
- Title
-
Masking the Backgrounds to Produce Object-Focused Images and Comparing that Augmentation Method to Other MethodsWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-05-12Full publication date if available
- Authors
-
Ahmad Hammoud, Ahmad GhandourList of authors in order
- Landing page
-
https://doi.org/10.14738/tmlai.103.12245Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.14738/tmlai.103.12245Direct OA link when available
- Concepts
-
Computer science, Artificial intelligence, Image (mathematics), Object (grammar), Masking (illustration), Pattern recognition (psychology), Kernel (algebra), Testbed, Computer vision, Machine learning, Mathematics, Computer network, Combinatorics, Art, Visual artsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4386871306 |
|---|---|
| doi | https://doi.org/10.14738/tmlai.103.12245 |
| ids.doi | https://doi.org/10.14738/tmlai.103.12245 |
| ids.openalex | https://openalex.org/W4386871306 |
| fwci | 0.0 |
| type | article |
| title | Masking the Backgrounds to Produce Object-Focused Images and Comparing that Augmentation Method to Other Methods |
| biblio.issue | 3 |
| biblio.volume | 10 |
| biblio.last_page | 24 |
| biblio.first_page | 1 |
| topics[0].id | https://openalex.org/T11019 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.991100013256073 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Image Enhancement Techniques |
| topics[1].id | https://openalex.org/T10627 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9822999835014343 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1707 |
| topics[1].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[1].display_name | Advanced Image and Video Retrieval Techniques |
| topics[2].id | https://openalex.org/T11659 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9742000102996826 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2214 |
| topics[2].subfield.display_name | Media Technology |
| topics[2].display_name | Advanced Image Fusion Techniques |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.8354472517967224 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C154945302 |
| concepts[1].level | 1 |
| concepts[1].score | 0.6691228747367859 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[1].display_name | Artificial intelligence |
| concepts[2].id | https://openalex.org/C115961682 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6189621686935425 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q860623 |
| concepts[2].display_name | Image (mathematics) |
| concepts[3].id | https://openalex.org/C2781238097 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5192363858222961 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q175026 |
| concepts[3].display_name | Object (grammar) |
| concepts[4].id | https://openalex.org/C2777402240 |
| concepts[4].level | 2 |
| concepts[4].score | 0.49766805768013 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q6783436 |
| concepts[4].display_name | Masking (illustration) |
| concepts[5].id | https://openalex.org/C153180895 |
| concepts[5].level | 2 |
| concepts[5].score | 0.4676990509033203 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[5].display_name | Pattern recognition (psychology) |
| concepts[6].id | https://openalex.org/C74193536 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4605402648448944 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q574844 |
| concepts[6].display_name | Kernel (algebra) |
| concepts[7].id | https://openalex.org/C31395832 |
| concepts[7].level | 2 |
| concepts[7].score | 0.44796210527420044 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q1318674 |
| concepts[7].display_name | Testbed |
| concepts[8].id | https://openalex.org/C31972630 |
| concepts[8].level | 1 |
| concepts[8].score | 0.37010377645492554 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[8].display_name | Computer vision |
| concepts[9].id | https://openalex.org/C119857082 |
| concepts[9].level | 1 |
| concepts[9].score | 0.33984535932540894 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[9].display_name | Machine learning |
| concepts[10].id | https://openalex.org/C33923547 |
| concepts[10].level | 0 |
| concepts[10].score | 0.08926334977149963 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[10].display_name | Mathematics |
| concepts[11].id | https://openalex.org/C31258907 |
| concepts[11].level | 1 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q1301371 |
| concepts[11].display_name | Computer network |
| concepts[12].id | https://openalex.org/C114614502 |
| concepts[12].level | 1 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q76592 |
| concepts[12].display_name | Combinatorics |
| concepts[13].id | https://openalex.org/C142362112 |
| concepts[13].level | 0 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q735 |
| concepts[13].display_name | Art |
| concepts[14].id | https://openalex.org/C153349607 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q36649 |
| concepts[14].display_name | Visual arts |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.8354472517967224 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[1].score | 0.6691228747367859 |
| keywords[1].display_name | Artificial intelligence |
| keywords[2].id | https://openalex.org/keywords/image |
| keywords[2].score | 0.6189621686935425 |
| keywords[2].display_name | Image (mathematics) |
| keywords[3].id | https://openalex.org/keywords/object |
| keywords[3].score | 0.5192363858222961 |
| keywords[3].display_name | Object (grammar) |
| keywords[4].id | https://openalex.org/keywords/masking |
| keywords[4].score | 0.49766805768013 |
| keywords[4].display_name | Masking (illustration) |
| keywords[5].id | https://openalex.org/keywords/pattern-recognition |
| keywords[5].score | 0.4676990509033203 |
| keywords[5].display_name | Pattern recognition (psychology) |
| keywords[6].id | https://openalex.org/keywords/kernel |
| keywords[6].score | 0.4605402648448944 |
| keywords[6].display_name | Kernel (algebra) |
| keywords[7].id | https://openalex.org/keywords/testbed |
| keywords[7].score | 0.44796210527420044 |
| keywords[7].display_name | Testbed |
| keywords[8].id | https://openalex.org/keywords/computer-vision |
| keywords[8].score | 0.37010377645492554 |
| keywords[8].display_name | Computer vision |
| keywords[9].id | https://openalex.org/keywords/machine-learning |
| keywords[9].score | 0.33984535932540894 |
| keywords[9].display_name | Machine learning |
| keywords[10].id | https://openalex.org/keywords/mathematics |
| keywords[10].score | 0.08926334977149963 |
| keywords[10].display_name | Mathematics |
| language | en |
| locations[0].id | doi:10.14738/tmlai.103.12245 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2764853077 |
| locations[0].source.issn | 2054-7390 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2054-7390 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Transactions on Machine Learning and Artificial Intelligence |
| locations[0].source.host_organization | |
| locations[0].source.host_organization_name | |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Transactions on Machine Learning and Artificial Intelligence |
| locations[0].landing_page_url | https://doi.org/10.14738/tmlai.103.12245 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5102899689 |
| authorships[0].author.orcid | https://orcid.org/0009-0001-7581-9024 |
| authorships[0].author.display_name | Ahmad Hammoud |
| authorships[0].countries | LB |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I904090387 |
| authorships[0].affiliations[0].raw_affiliation_string | Global University |
| authorships[0].institutions[0].id | https://openalex.org/I904090387 |
| authorships[0].institutions[0].ror | https://ror.org/04frhb927 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I904090387 |
| authorships[0].institutions[0].country_code | LB |
| authorships[0].institutions[0].display_name | Global University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Ahmad Hammoud |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Global University |
| authorships[1].author.id | https://openalex.org/A5072415989 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-4445-7443 |
| authorships[1].author.display_name | Ahmad Ghandour |
| authorships[1].countries | LB |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I98635879 |
| authorships[1].affiliations[0].raw_affiliation_string | American University of Beirut |
| authorships[1].institutions[0].id | https://openalex.org/I98635879 |
| authorships[1].institutions[0].ror | https://ror.org/04pznsd21 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I98635879 |
| authorships[1].institutions[0].country_code | LB |
| authorships[1].institutions[0].display_name | American University of Beirut |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | Ahmad Ghandour |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | American University of Beirut |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.14738/tmlai.103.12245 |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Masking the Backgrounds to Produce Object-Focused Images and Comparing that Augmentation Method to Other Methods |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11019 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.991100013256073 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Image Enhancement Techniques |
| related_works | https://openalex.org/W2975200075, https://openalex.org/W2007544051, https://openalex.org/W1837097281, https://openalex.org/W1966410754, https://openalex.org/W2363840281, https://openalex.org/W2325242284, https://openalex.org/W2789220062, https://openalex.org/W2030539674, https://openalex.org/W2095705906, https://openalex.org/W2732308154 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.14738/tmlai.103.12245 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2764853077 |
| best_oa_location.source.issn | 2054-7390 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2054-7390 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Transactions on Machine Learning and Artificial Intelligence |
| best_oa_location.source.host_organization | |
| best_oa_location.source.host_organization_name | |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Transactions on Machine Learning and Artificial Intelligence |
| best_oa_location.landing_page_url | https://doi.org/10.14738/tmlai.103.12245 |
| primary_location.id | doi:10.14738/tmlai.103.12245 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2764853077 |
| primary_location.source.issn | 2054-7390 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2054-7390 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Transactions on Machine Learning and Artificial Intelligence |
| primary_location.source.host_organization | |
| primary_location.source.host_organization_name | |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Transactions on Machine Learning and Artificial Intelligence |
| primary_location.landing_page_url | https://doi.org/10.14738/tmlai.103.12245 |
| publication_date | 2022-05-12 |
| publication_year | 2022 |
| referenced_works_count | 0 |
| abstract_inverted_index.3 | 110 |
| abstract_inverted_index.9 | 96 |
| abstract_inverted_index.A | 114 |
| abstract_inverted_index.B | 126 |
| abstract_inverted_index.C | 138 |
| abstract_inverted_index.a | 3, 15, 20, 69 |
| abstract_inverted_index.14 | 77 |
| abstract_inverted_index.26 | 87 |
| abstract_inverted_index.It | 177 |
| abstract_inverted_index.an | 32 |
| abstract_inverted_index.be | 166 |
| abstract_inverted_index.in | 84, 109, 152, 172 |
| abstract_inverted_index.is | 2, 30, 42, 107 |
| abstract_inverted_index.of | 22, 60, 68, 71, 76, 99, 103, 174 |
| abstract_inverted_index.on | 48 |
| abstract_inverted_index.to | 7 |
| abstract_inverted_index.260 | 105 |
| abstract_inverted_index.780 | 61 |
| abstract_inverted_index.OFI | 50, 158, 182 |
| abstract_inverted_index.The | 63, 149, 200 |
| abstract_inverted_index.all | 81 |
| abstract_inverted_index.and | 39, 55, 79, 93, 120, 131, 136, 143, 209 |
| abstract_inverted_index.are | 89, 117, 123, 129, 134, 141, 146, 214 |
| abstract_inverted_index.can | 165 |
| abstract_inverted_index.for | 18 |
| abstract_inverted_index.its | 53 |
| abstract_inverted_index.not | 118, 147, 192 |
| abstract_inverted_index.the | 36, 49, 57, 162, 175, 206, 210, 216 |
| abstract_inverted_index.use | 67 |
| abstract_inverted_index.was | 178 |
| abstract_inverted_index.Each | 102 |
| abstract_inverted_index.This | 12, 29, 45 |
| abstract_inverted_index.also | 179, 203 |
| abstract_inverted_index.best | 217 |
| abstract_inverted_index.data | 218 |
| abstract_inverted_index.else | 41 |
| abstract_inverted_index.help | 185 |
| abstract_inverted_index.made | 43 |
| abstract_inverted_index.only | 35 |
| abstract_inverted_index.show | 155 |
| abstract_inverted_index.some | 186 |
| abstract_inverted_index.than | 168 |
| abstract_inverted_index.that | 156, 181, 205 |
| abstract_inverted_index.they | 190 |
| abstract_inverted_index.this | 153 |
| abstract_inverted_index.used | 119, 130, 142 |
| abstract_inverted_index.very | 4 |
| abstract_inverted_index.were | 198 |
| abstract_inverted_index.when | 31, 194 |
| abstract_inverted_index.with | 161 |
| abstract_inverted_index.16.4% | 173 |
| abstract_inverted_index.Image | 0, 27 |
| abstract_inverted_index.These | 86 |
| abstract_inverted_index.after | 94 |
| abstract_inverted_index.along | 160 |
| abstract_inverted_index.among | 215 |
| abstract_inverted_index.color | 211 |
| abstract_inverted_index.could | 184, 191 |
| abstract_inverted_index.image | 10, 33 |
| abstract_inverted_index.learn | 188, 193 |
| abstract_inverted_index.makes | 66 |
| abstract_inverted_index.novel | 16 |
| abstract_inverted_index.other | 169, 195 |
| abstract_inverted_index.paper | 13, 46, 154 |
| abstract_inverted_index.shown | 180 |
| abstract_inverted_index.space | 212 |
| abstract_inverted_index.these | 104 |
| abstract_inverted_index.using | 157 |
| abstract_inverted_index.(8,000 | 74 |
| abstract_inverted_index.(OFI). | 28 |
| abstract_inverted_index.Keras. | 85 |
| abstract_inverted_index.Kernel | 207 |
| abstract_inverted_index.before | 91 |
| abstract_inverted_index.better | 167 |
| abstract_inverted_index.called | 25 |
| abstract_inverted_index.cases. | 176 |
| abstract_inverted_index.expand | 8 |
| abstract_inverted_index.images | 75, 159, 164 |
| abstract_inverted_index.layers | 122, 133, 145 |
| abstract_inverted_index.method | 6, 17, 183 |
| abstract_inverted_index.models | 83, 88, 187 |
| abstract_inverted_index.object | 38 |
| abstract_inverted_index.proved | 204 |
| abstract_inverted_index.subset | 70 |
| abstract_inverted_index.tested | 90, 108 |
| abstract_inverted_index.white. | 44 |
| abstract_inverted_index.Dataset | 73 |
| abstract_inverted_index.filters | 208 |
| abstract_inverted_index.images, | 24 |
| abstract_inverted_index.labeled | 37 |
| abstract_inverted_index.methods | 171, 197 |
| abstract_inverted_index.network | 121, 132, 144 |
| abstract_inverted_index.testbed | 65 |
| abstract_inverted_index.weights | 116, 128, 140 |
| abstract_inverted_index.ImageNet | 72 |
| abstract_inverted_index.accuracy | 59 |
| abstract_inverted_index.although | 189 |
| abstract_inverted_index.applied. | 199 |
| abstract_inverted_index.applying | 95 |
| abstract_inverted_index.classes) | 78 |
| abstract_inverted_index.compares | 56 |
| abstract_inverted_index.creating | 19 |
| abstract_inverted_index.existing | 9, 23 |
| abstract_inverted_index.explores | 52 |
| abstract_inverted_index.includes | 34 |
| abstract_inverted_index.methods. | 101, 220 |
| abstract_inverted_index.original | 163 |
| abstract_inverted_index.powerful | 5 |
| abstract_inverted_index.presents | 14 |
| abstract_inverted_index.scenario | 113, 125, 137 |
| abstract_inverted_index.(ImageNet | 115, 127, 139 |
| abstract_inverted_index.approach, | 51 |
| abstract_inverted_index.available | 82 |
| abstract_inverted_index.conducted | 201 |
| abstract_inverted_index.datasets. | 11 |
| abstract_inverted_index.different | 97, 111 |
| abstract_inverted_index.notebooks | 106 |
| abstract_inverted_index.presented | 64, 151 |
| abstract_inverted_index.variation | 21 |
| abstract_inverted_index.categories | 98 |
| abstract_inverted_index.elaborates | 47 |
| abstract_inverted_index.everything | 40 |
| abstract_inverted_index.notebooks. | 62 |
| abstract_inverted_index.scenarios: | 112 |
| abstract_inverted_index.trainable) | 135 |
| abstract_inverted_index.validation | 58 |
| abstract_inverted_index.efficiency, | 54 |
| abstract_inverted_index.experiments | 150, 202 |
| abstract_inverted_index.trainable), | 124 |
| abstract_inverted_index.trainable). | 148 |
| abstract_inverted_index.augmentation | 1, 92, 100, 170, 196, 219 |
| abstract_inverted_index.incorporates | 80 |
| abstract_inverted_index.Object-Focused | 26 |
| abstract_inverted_index.transformations | 213 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 2 |
| citation_normalized_percentile.value | 0.20187695 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |