Massively Parallel Video Networks Article Swipe
YOU?
·
· 2018
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.1806.03863
We introduce a class of causal video understanding models that aims to improve efficiency of video processing by maximising throughput, minimising latency, and reducing the number of clock cycles. Leveraging operation pipelining and multi-rate clocks, these models perform a minimal amount of computation (e.g. as few as four convolutional layers) for each frame per timestep to produce an output. The models are still very deep, with dozens of such operations being performed but in a pipelined fashion that enables depth-parallel computation. We illustrate the proposed principles by applying them to existing image architectures and analyse their behaviour on two video tasks: action recognition and human keypoint localisation. The results show that a significant degree of parallelism, and implicitly speedup, can be achieved with little loss in performance.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/1806.03863
- https://arxiv.org/pdf/1806.03863
- OA Status
- green
- Cited By
- 2
- References
- 26
- Related Works
- 20
- OpenAlex ID
- https://openalex.org/W2951239902
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W2951239902Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.1806.03863Digital Object Identifier
- Title
-
Massively Parallel Video NetworksWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2018Year of publication
- Publication date
-
2018-06-11Full publication date if available
- Authors
-
João Carreira, Viorica Pătrăucean, Laurent Mazaré, Andrew Zisserman, Simon OsinderoList of authors in order
- Landing page
-
https://arxiv.org/abs/1806.03863Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/1806.03863Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/1806.03863Direct OA link when available
- Concepts
-
Computer science, Speedup, Computation, Latency (audio), Massively parallel, Parallel computing, Frame rate, Throughput, Parallel processing, Frame (networking), Artificial intelligence, Computer engineering, Real-time computing, Algorithm, Computer network, Wireless, TelecommunicationsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
2Total citation count in OpenAlex
- Citations by year (recent)
-
2021: 1, 2020: 1Per-year citation counts (last 5 years)
- References (count)
-
26Number of works referenced by this work
- Related works (count)
-
20Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W2951239902 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.1806.03863 |
| ids.doi | https://doi.org/10.48550/arxiv.1806.03863 |
| ids.mag | 2951239902 |
| ids.openalex | https://openalex.org/W2951239902 |
| fwci | |
| type | preprint |
| title | Massively Parallel Video Networks |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11714 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9997000098228455 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Multimodal Machine Learning Applications |
| topics[1].id | https://openalex.org/T10812 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9995999932289124 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1707 |
| topics[1].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[1].display_name | Human Pose and Action Recognition |
| topics[2].id | https://openalex.org/T10531 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9968000054359436 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1707 |
| topics[2].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[2].display_name | Advanced Vision and Imaging |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.8938789367675781 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C68339613 |
| concepts[1].level | 2 |
| concepts[1].score | 0.8022552132606506 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1549489 |
| concepts[1].display_name | Speedup |
| concepts[2].id | https://openalex.org/C45374587 |
| concepts[2].level | 2 |
| concepts[2].score | 0.7422608137130737 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q12525525 |
| concepts[2].display_name | Computation |
| concepts[3].id | https://openalex.org/C82876162 |
| concepts[3].level | 2 |
| concepts[3].score | 0.7021167278289795 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q17096504 |
| concepts[3].display_name | Latency (audio) |
| concepts[4].id | https://openalex.org/C190475519 |
| concepts[4].level | 2 |
| concepts[4].score | 0.6775771379470825 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q544384 |
| concepts[4].display_name | Massively parallel |
| concepts[5].id | https://openalex.org/C173608175 |
| concepts[5].level | 1 |
| concepts[5].score | 0.6419236063957214 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q232661 |
| concepts[5].display_name | Parallel computing |
| concepts[6].id | https://openalex.org/C3261483 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5305277109146118 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q119565 |
| concepts[6].display_name | Frame rate |
| concepts[7].id | https://openalex.org/C157764524 |
| concepts[7].level | 3 |
| concepts[7].score | 0.48083457350730896 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q1383412 |
| concepts[7].display_name | Throughput |
| concepts[8].id | https://openalex.org/C106515295 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4470337927341461 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q26806595 |
| concepts[8].display_name | Parallel processing |
| concepts[9].id | https://openalex.org/C126042441 |
| concepts[9].level | 2 |
| concepts[9].score | 0.43906164169311523 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q1324888 |
| concepts[9].display_name | Frame (networking) |
| concepts[10].id | https://openalex.org/C154945302 |
| concepts[10].level | 1 |
| concepts[10].score | 0.3349881172180176 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[10].display_name | Artificial intelligence |
| concepts[11].id | https://openalex.org/C113775141 |
| concepts[11].level | 1 |
| concepts[11].score | 0.33284449577331543 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q428691 |
| concepts[11].display_name | Computer engineering |
| concepts[12].id | https://openalex.org/C79403827 |
| concepts[12].level | 1 |
| concepts[12].score | 0.32066962122917175 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q3988 |
| concepts[12].display_name | Real-time computing |
| concepts[13].id | https://openalex.org/C11413529 |
| concepts[13].level | 1 |
| concepts[13].score | 0.20124080777168274 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[13].display_name | Algorithm |
| concepts[14].id | https://openalex.org/C31258907 |
| concepts[14].level | 1 |
| concepts[14].score | 0.10365384817123413 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q1301371 |
| concepts[14].display_name | Computer network |
| concepts[15].id | https://openalex.org/C555944384 |
| concepts[15].level | 2 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q249 |
| concepts[15].display_name | Wireless |
| concepts[16].id | https://openalex.org/C76155785 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q418 |
| concepts[16].display_name | Telecommunications |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.8938789367675781 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/speedup |
| keywords[1].score | 0.8022552132606506 |
| keywords[1].display_name | Speedup |
| keywords[2].id | https://openalex.org/keywords/computation |
| keywords[2].score | 0.7422608137130737 |
| keywords[2].display_name | Computation |
| keywords[3].id | https://openalex.org/keywords/latency |
| keywords[3].score | 0.7021167278289795 |
| keywords[3].display_name | Latency (audio) |
| keywords[4].id | https://openalex.org/keywords/massively-parallel |
| keywords[4].score | 0.6775771379470825 |
| keywords[4].display_name | Massively parallel |
| keywords[5].id | https://openalex.org/keywords/parallel-computing |
| keywords[5].score | 0.6419236063957214 |
| keywords[5].display_name | Parallel computing |
| keywords[6].id | https://openalex.org/keywords/frame-rate |
| keywords[6].score | 0.5305277109146118 |
| keywords[6].display_name | Frame rate |
| keywords[7].id | https://openalex.org/keywords/throughput |
| keywords[7].score | 0.48083457350730896 |
| keywords[7].display_name | Throughput |
| keywords[8].id | https://openalex.org/keywords/parallel-processing |
| keywords[8].score | 0.4470337927341461 |
| keywords[8].display_name | Parallel processing |
| keywords[9].id | https://openalex.org/keywords/frame |
| keywords[9].score | 0.43906164169311523 |
| keywords[9].display_name | Frame (networking) |
| keywords[10].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[10].score | 0.3349881172180176 |
| keywords[10].display_name | Artificial intelligence |
| keywords[11].id | https://openalex.org/keywords/computer-engineering |
| keywords[11].score | 0.33284449577331543 |
| keywords[11].display_name | Computer engineering |
| keywords[12].id | https://openalex.org/keywords/real-time-computing |
| keywords[12].score | 0.32066962122917175 |
| keywords[12].display_name | Real-time computing |
| keywords[13].id | https://openalex.org/keywords/algorithm |
| keywords[13].score | 0.20124080777168274 |
| keywords[13].display_name | Algorithm |
| keywords[14].id | https://openalex.org/keywords/computer-network |
| keywords[14].score | 0.10365384817123413 |
| keywords[14].display_name | Computer network |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:1806.03863 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/1806.03863 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/1806.03863 |
| locations[1].id | mag:2951239902 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | arXiv (Cornell University) |
| locations[1].landing_page_url | https://arxiv.org/pdf/1806.03863 |
| locations[2].id | doi:10.48550/arxiv.1806.03863 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S4306400194 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | True |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | arXiv (Cornell University) |
| locations[2].source.host_organization | https://openalex.org/I205783295 |
| locations[2].source.host_organization_name | Cornell University |
| locations[2].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | |
| locations[2].raw_type | article |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | |
| locations[2].raw_source_name | |
| locations[2].landing_page_url | https://doi.org/10.48550/arxiv.1806.03863 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5057909195 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | João Carreira |
| authorships[0].countries | GB |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I4210090411 |
| authorships[0].affiliations[0].raw_affiliation_string | DeepMind, London, UK |
| authorships[0].institutions[0].id | https://openalex.org/I4210090411 |
| authorships[0].institutions[0].ror | https://ror.org/00971b260 |
| authorships[0].institutions[0].type | company |
| authorships[0].institutions[0].lineage | https://openalex.org/I4210090411, https://openalex.org/I4210128969 |
| authorships[0].institutions[0].country_code | GB |
| authorships[0].institutions[0].display_name | DeepMind (United Kingdom) |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Joao Carreira |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | DeepMind, London, UK |
| authorships[1].author.id | https://openalex.org/A5077765073 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Viorica Pătrăucean |
| authorships[1].countries | GB |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I4210090411 |
| authorships[1].affiliations[0].raw_affiliation_string | DeepMind, London, UK |
| authorships[1].institutions[0].id | https://openalex.org/I4210090411 |
| authorships[1].institutions[0].ror | https://ror.org/00971b260 |
| authorships[1].institutions[0].type | company |
| authorships[1].institutions[0].lineage | https://openalex.org/I4210090411, https://openalex.org/I4210128969 |
| authorships[1].institutions[0].country_code | GB |
| authorships[1].institutions[0].display_name | DeepMind (United Kingdom) |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Viorica Patraucean |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | DeepMind, London, UK |
| authorships[2].author.id | https://openalex.org/A5069477485 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Laurent Mazaré |
| authorships[2].countries | GB |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I4210090411 |
| authorships[2].affiliations[0].raw_affiliation_string | DeepMind, London, UK |
| authorships[2].institutions[0].id | https://openalex.org/I4210090411 |
| authorships[2].institutions[0].ror | https://ror.org/00971b260 |
| authorships[2].institutions[0].type | company |
| authorships[2].institutions[0].lineage | https://openalex.org/I4210090411, https://openalex.org/I4210128969 |
| authorships[2].institutions[0].country_code | GB |
| authorships[2].institutions[0].display_name | DeepMind (United Kingdom) |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Laurent Mazare |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | DeepMind, London, UK |
| authorships[3].author.id | https://openalex.org/A5057678172 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-8945-8573 |
| authorships[3].author.display_name | Andrew Zisserman |
| authorships[3].countries | GB |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I4210090411 |
| authorships[3].affiliations[0].raw_affiliation_string | DeepMind, London, UK |
| authorships[3].institutions[0].id | https://openalex.org/I4210090411 |
| authorships[3].institutions[0].ror | https://ror.org/00971b260 |
| authorships[3].institutions[0].type | company |
| authorships[3].institutions[0].lineage | https://openalex.org/I4210090411, https://openalex.org/I4210128969 |
| authorships[3].institutions[0].country_code | GB |
| authorships[3].institutions[0].display_name | DeepMind (United Kingdom) |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Andrew Zisserman |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | DeepMind, London, UK |
| authorships[4].author.id | https://openalex.org/A5052435039 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Simon Osindero |
| authorships[4].countries | GB |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I4210090411 |
| authorships[4].affiliations[0].raw_affiliation_string | DeepMind, London, UK |
| authorships[4].institutions[0].id | https://openalex.org/I4210090411 |
| authorships[4].institutions[0].ror | https://ror.org/00971b260 |
| authorships[4].institutions[0].type | company |
| authorships[4].institutions[0].lineage | https://openalex.org/I4210090411, https://openalex.org/I4210128969 |
| authorships[4].institutions[0].country_code | GB |
| authorships[4].institutions[0].display_name | DeepMind (United Kingdom) |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Simon Osindero |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | DeepMind, London, UK |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/1806.03863 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Massively Parallel Video Networks |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T11714 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9997000098228455 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Multimodal Machine Learning Applications |
| related_works | https://openalex.org/W2167215970, https://openalex.org/W3168682801, https://openalex.org/W1996901117, https://openalex.org/W3143293307, https://openalex.org/W3187255235, https://openalex.org/W2963959650, https://openalex.org/W2766359043, https://openalex.org/W2753015639, https://openalex.org/W2891017939, https://openalex.org/W2473113737, https://openalex.org/W2969766737, https://openalex.org/W105216899, https://openalex.org/W3196029931, https://openalex.org/W3210803593, https://openalex.org/W2969868335, https://openalex.org/W2753525484, https://openalex.org/W3091683744, https://openalex.org/W2910132948, https://openalex.org/W2081031949, https://openalex.org/W2952713184 |
| cited_by_count | 2 |
| counts_by_year[0].year | 2021 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2020 |
| counts_by_year[1].cited_by_count | 1 |
| locations_count | 3 |
| best_oa_location.id | pmh:oai:arXiv.org:1806.03863 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/1806.03863 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/1806.03863 |
| primary_location.id | pmh:oai:arXiv.org:1806.03863 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/1806.03863 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/1806.03863 |
| publication_date | 2018-06-11 |
| publication_year | 2018 |
| referenced_works | https://openalex.org/W2599765304, https://openalex.org/W2963866581, https://openalex.org/W2101201254, https://openalex.org/W2952276042, https://openalex.org/W2097117768, https://openalex.org/W2949827582, https://openalex.org/W2953106684, https://openalex.org/W2952453038, https://openalex.org/W2610147486, https://openalex.org/W2963524571, https://openalex.org/W602397586, https://openalex.org/W2562457735, https://openalex.org/W2949267040, https://openalex.org/W2612445135, https://openalex.org/W2570343428, https://openalex.org/W2964286567, https://openalex.org/W2560474170, https://openalex.org/W2963446712, https://openalex.org/W1927052826, https://openalex.org/W1522734439, https://openalex.org/W2619947201, https://openalex.org/W2963253279, https://openalex.org/W2547418827, https://openalex.org/W3010257550, https://openalex.org/W1686810756, https://openalex.org/W2952432176 |
| referenced_works_count | 26 |
| abstract_inverted_index.a | 2, 38, 74, 111 |
| abstract_inverted_index.We | 0, 81 |
| abstract_inverted_index.an | 57 |
| abstract_inverted_index.as | 44, 46 |
| abstract_inverted_index.be | 120 |
| abstract_inverted_index.by | 17, 86 |
| abstract_inverted_index.in | 73, 125 |
| abstract_inverted_index.of | 4, 14, 26, 41, 67, 114 |
| abstract_inverted_index.on | 97 |
| abstract_inverted_index.to | 11, 55, 89 |
| abstract_inverted_index.The | 59, 107 |
| abstract_inverted_index.and | 22, 32, 93, 103, 116 |
| abstract_inverted_index.are | 61 |
| abstract_inverted_index.but | 72 |
| abstract_inverted_index.can | 119 |
| abstract_inverted_index.few | 45 |
| abstract_inverted_index.for | 50 |
| abstract_inverted_index.per | 53 |
| abstract_inverted_index.the | 24, 83 |
| abstract_inverted_index.two | 98 |
| abstract_inverted_index.aims | 10 |
| abstract_inverted_index.each | 51 |
| abstract_inverted_index.four | 47 |
| abstract_inverted_index.loss | 124 |
| abstract_inverted_index.show | 109 |
| abstract_inverted_index.such | 68 |
| abstract_inverted_index.that | 9, 77, 110 |
| abstract_inverted_index.them | 88 |
| abstract_inverted_index.very | 63 |
| abstract_inverted_index.with | 65, 122 |
| abstract_inverted_index.(e.g. | 43 |
| abstract_inverted_index.being | 70 |
| abstract_inverted_index.class | 3 |
| abstract_inverted_index.clock | 27 |
| abstract_inverted_index.deep, | 64 |
| abstract_inverted_index.frame | 52 |
| abstract_inverted_index.human | 104 |
| abstract_inverted_index.image | 91 |
| abstract_inverted_index.still | 62 |
| abstract_inverted_index.their | 95 |
| abstract_inverted_index.these | 35 |
| abstract_inverted_index.video | 6, 15, 99 |
| abstract_inverted_index.action | 101 |
| abstract_inverted_index.amount | 40 |
| abstract_inverted_index.causal | 5 |
| abstract_inverted_index.degree | 113 |
| abstract_inverted_index.dozens | 66 |
| abstract_inverted_index.little | 123 |
| abstract_inverted_index.models | 8, 36, 60 |
| abstract_inverted_index.number | 25 |
| abstract_inverted_index.tasks: | 100 |
| abstract_inverted_index.analyse | 94 |
| abstract_inverted_index.clocks, | 34 |
| abstract_inverted_index.cycles. | 28 |
| abstract_inverted_index.enables | 78 |
| abstract_inverted_index.fashion | 76 |
| abstract_inverted_index.improve | 12 |
| abstract_inverted_index.layers) | 49 |
| abstract_inverted_index.minimal | 39 |
| abstract_inverted_index.output. | 58 |
| abstract_inverted_index.perform | 37 |
| abstract_inverted_index.produce | 56 |
| abstract_inverted_index.results | 108 |
| abstract_inverted_index.achieved | 121 |
| abstract_inverted_index.applying | 87 |
| abstract_inverted_index.existing | 90 |
| abstract_inverted_index.keypoint | 105 |
| abstract_inverted_index.latency, | 21 |
| abstract_inverted_index.proposed | 84 |
| abstract_inverted_index.reducing | 23 |
| abstract_inverted_index.speedup, | 118 |
| abstract_inverted_index.timestep | 54 |
| abstract_inverted_index.behaviour | 96 |
| abstract_inverted_index.introduce | 1 |
| abstract_inverted_index.operation | 30 |
| abstract_inverted_index.performed | 71 |
| abstract_inverted_index.pipelined | 75 |
| abstract_inverted_index.Leveraging | 29 |
| abstract_inverted_index.efficiency | 13 |
| abstract_inverted_index.illustrate | 82 |
| abstract_inverted_index.implicitly | 117 |
| abstract_inverted_index.maximising | 18 |
| abstract_inverted_index.minimising | 20 |
| abstract_inverted_index.multi-rate | 33 |
| abstract_inverted_index.operations | 69 |
| abstract_inverted_index.pipelining | 31 |
| abstract_inverted_index.principles | 85 |
| abstract_inverted_index.processing | 16 |
| abstract_inverted_index.computation | 42 |
| abstract_inverted_index.recognition | 102 |
| abstract_inverted_index.significant | 112 |
| abstract_inverted_index.throughput, | 19 |
| abstract_inverted_index.computation. | 80 |
| abstract_inverted_index.parallelism, | 115 |
| abstract_inverted_index.performance. | 126 |
| abstract_inverted_index.architectures | 92 |
| abstract_inverted_index.convolutional | 48 |
| abstract_inverted_index.localisation. | 106 |
| abstract_inverted_index.understanding | 7 |
| abstract_inverted_index.depth-parallel | 79 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 5 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/7 |
| sustainable_development_goals[0].score | 0.5299999713897705 |
| sustainable_development_goals[0].display_name | Affordable and clean energy |
| citation_normalized_percentile |