Materials Datasets with 273 compositional and structural features extracted from Matminer Article Swipe
Kangming Li
,
Jason Hattrick‐Simpers
·
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.5281/zenodo.7659268
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.5281/zenodo.7659268
Materials Datasets with 273 compositional and structural features extracted from Matminer. Materials datasets are retrieved using the python package jarvis-tools.
Related Topics
Metadata
- Type
- dataset
- Language
- en
- Landing Page
- https://doi.org/10.5281/zenodo.7659268
- OA Status
- green
- References
- 2
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4393771070
All OpenAlex metadata
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4393771070Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.5281/zenodo.7659268Digital Object Identifier
- Title
-
Materials Datasets with 273 compositional and structural features extracted from MatminerWork title
- Type
-
datasetOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-05-25Full publication date if available
- Authors
-
Kangming Li, Jason Hattrick‐SimpersList of authors in order
- Landing page
-
https://doi.org/10.5281/zenodo.7659268Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.5281/zenodo.7659268Direct OA link when available
- Concepts
-
Computer science, Pattern recognition (psychology), Artificial intelligenceTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
2Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4393771070 |
|---|---|
| doi | https://doi.org/10.5281/zenodo.7659268 |
| ids.doi | https://doi.org/10.5281/zenodo.7659268 |
| ids.openalex | https://openalex.org/W4393771070 |
| fwci | |
| type | dataset |
| title | Materials Datasets with 273 compositional and structural features extracted from Matminer |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11948 |
| topics[0].field.id | https://openalex.org/fields/25 |
| topics[0].field.display_name | Materials Science |
| topics[0].score | 0.9857000112533569 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2505 |
| topics[0].subfield.display_name | Materials Chemistry |
| topics[0].display_name | Machine Learning in Materials Science |
| topics[1].id | https://openalex.org/T12613 |
| topics[1].field.id | https://openalex.org/fields/25 |
| topics[1].field.display_name | Materials Science |
| topics[1].score | 0.9670000076293945 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2505 |
| topics[1].subfield.display_name | Materials Chemistry |
| topics[1].display_name | X-ray Diffraction in Crystallography |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.40753740072250366 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C153180895 |
| concepts[1].level | 2 |
| concepts[1].score | 0.35909897089004517 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[1].display_name | Pattern recognition (psychology) |
| concepts[2].id | https://openalex.org/C154945302 |
| concepts[2].level | 1 |
| concepts[2].score | 0.3267420530319214 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[2].display_name | Artificial intelligence |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.40753740072250366 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/pattern-recognition |
| keywords[1].score | 0.35909897089004517 |
| keywords[1].display_name | Pattern recognition (psychology) |
| keywords[2].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[2].score | 0.3267420530319214 |
| keywords[2].display_name | Artificial intelligence |
| language | en |
| locations[0].id | doi:10.5281/zenodo.7659268 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400562 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Zenodo (CERN European Organization for Nuclear Research) |
| locations[0].source.host_organization | https://openalex.org/I67311998 |
| locations[0].source.host_organization_name | European Organization for Nuclear Research |
| locations[0].source.host_organization_lineage | https://openalex.org/I67311998 |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | |
| locations[0].raw_type | dataset |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | False |
| locations[0].is_published | |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.5281/zenodo.7659268 |
| indexed_in | datacite |
| authorships[0].author.id | https://openalex.org/A5055766485 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-4471-8527 |
| authorships[0].author.display_name | Kangming Li |
| authorships[0].countries | AU, CA |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I185261750, https://openalex.org/I4210129794 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Materials Science and Engineering, University of Toronto |
| authorships[0].institutions[0].id | https://openalex.org/I4210129794 |
| authorships[0].institutions[0].ror | https://ror.org/03rs0fg31 |
| authorships[0].institutions[0].type | facility |
| authorships[0].institutions[0].lineage | https://openalex.org/I1292875679, https://openalex.org/I2801453606, https://openalex.org/I4210129794, https://openalex.org/I4387156119 |
| authorships[0].institutions[0].country_code | AU |
| authorships[0].institutions[0].display_name | Materials Science & Engineering |
| authorships[0].institutions[1].id | https://openalex.org/I185261750 |
| authorships[0].institutions[1].ror | https://ror.org/03dbr7087 |
| authorships[0].institutions[1].type | education |
| authorships[0].institutions[1].lineage | https://openalex.org/I185261750 |
| authorships[0].institutions[1].country_code | CA |
| authorships[0].institutions[1].display_name | University of Toronto |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Kangming Li |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Materials Science and Engineering, University of Toronto |
| authorships[1].author.id | https://openalex.org/A5073635313 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-2937-3188 |
| authorships[1].author.display_name | Jason Hattrick‐Simpers |
| authorships[1].countries | AU, CA |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I185261750, https://openalex.org/I4210129794 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Materials Science and Engineering, University of Toronto |
| authorships[1].institutions[0].id | https://openalex.org/I4210129794 |
| authorships[1].institutions[0].ror | https://ror.org/03rs0fg31 |
| authorships[1].institutions[0].type | facility |
| authorships[1].institutions[0].lineage | https://openalex.org/I1292875679, https://openalex.org/I2801453606, https://openalex.org/I4210129794, https://openalex.org/I4387156119 |
| authorships[1].institutions[0].country_code | AU |
| authorships[1].institutions[0].display_name | Materials Science & Engineering |
| authorships[1].institutions[1].id | https://openalex.org/I185261750 |
| authorships[1].institutions[1].ror | https://ror.org/03dbr7087 |
| authorships[1].institutions[1].type | education |
| authorships[1].institutions[1].lineage | https://openalex.org/I185261750 |
| authorships[1].institutions[1].country_code | CA |
| authorships[1].institutions[1].display_name | University of Toronto |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | Jason Hattrick-Simpers |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Materials Science and Engineering, University of Toronto |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.5281/zenodo.7659268 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Materials Datasets with 273 compositional and structural features extracted from Matminer |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T11948 |
| primary_topic.field.id | https://openalex.org/fields/25 |
| primary_topic.field.display_name | Materials Science |
| primary_topic.score | 0.9857000112533569 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2505 |
| primary_topic.subfield.display_name | Materials Chemistry |
| primary_topic.display_name | Machine Learning in Materials Science |
| related_works | https://openalex.org/W2748952813, https://openalex.org/W2390279801, https://openalex.org/W2358668433, https://openalex.org/W2376932109, https://openalex.org/W2001405890, https://openalex.org/W2382290278, https://openalex.org/W2478288626, https://openalex.org/W4391913857, https://openalex.org/W2033914206, https://openalex.org/W2042327336 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.5281/zenodo.7659268 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400562 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Zenodo (CERN European Organization for Nuclear Research) |
| best_oa_location.source.host_organization | https://openalex.org/I67311998 |
| best_oa_location.source.host_organization_name | European Organization for Nuclear Research |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I67311998 |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | |
| best_oa_location.raw_type | dataset |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.5281/zenodo.7659268 |
| primary_location.id | doi:10.5281/zenodo.7659268 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400562 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Zenodo (CERN European Organization for Nuclear Research) |
| primary_location.source.host_organization | https://openalex.org/I67311998 |
| primary_location.source.host_organization_name | European Organization for Nuclear Research |
| primary_location.source.host_organization_lineage | https://openalex.org/I67311998 |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | |
| primary_location.raw_type | dataset |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.5281/zenodo.7659268 |
| publication_date | 2023-05-25 |
| publication_year | 2023 |
| referenced_works | https://openalex.org/W2804431384, https://openalex.org/W3039596418 |
| referenced_works_count | 2 |
| abstract_inverted_index.273 | 3 |
| abstract_inverted_index.and | 5 |
| abstract_inverted_index.are | 13 |
| abstract_inverted_index.the | 16 |
| abstract_inverted_index.from | 9 |
| abstract_inverted_index.with | 2 |
| abstract_inverted_index.using | 15 |
| abstract_inverted_index.python | 17 |
| abstract_inverted_index.package | 18 |
| abstract_inverted_index.Datasets | 1 |
| abstract_inverted_index.datasets | 12 |
| abstract_inverted_index.features | 7 |
| abstract_inverted_index.Materials | 0, 11 |
| abstract_inverted_index.Matminer. | 10 |
| abstract_inverted_index.extracted | 8 |
| abstract_inverted_index.retrieved | 14 |
| abstract_inverted_index.structural | 6 |
| abstract_inverted_index.compositional | 4 |
| abstract_inverted_index.jarvis-tools. | 19 |
| cited_by_percentile_year | |
| countries_distinct_count | 2 |
| institutions_distinct_count | 2 |
| citation_normalized_percentile |