Matrix elements of $SO(3)$ in $sl_3$ representations as bispectral multivariate functions Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2308.12809
We compute the matrix elements of $SO(3)$ in any finite-dimensional irreducible representation of $sl_3$. They are expressed in terms of a double sum of products of Krawtchouk and Racah polynomials which generalize the Griffiths-Krawtchouk polynomials. Their recurrence and difference relations are obtained as byproducts of our construction. The proof is based on the decomposition of a general three-dimensional rotation in terms of elementary planar rotations and a transition between two embeddings of $sl_2$ in $sl_3$. The former is related to monovariate Krawtchouk polynomials and the latter, to monovariate Racah polynomials. The appearance of Racah polynomials in this context is algebraically explained by showing that the two $sl_2$ Casimir elements related to the two embeddings of $sl_2$ in $sl_3$ obey the Racah algebra relations. We also show that these two elements generate the centralizer in $U(sl_3)$ of the Cartan subalgebra and its complete algebraic description is given.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2308.12809
- https://arxiv.org/pdf/2308.12809
- OA Status
- green
- References
- 57
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4386185445
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4386185445Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2308.12809Digital Object Identifier
- Title
-
Matrix elements of $SO(3)$ in $sl_3$ representations as bispectral multivariate functionsWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-08-24Full publication date if available
- Authors
-
Nicolas Crampé, Julien Gaboriaud, Loïc Poulain d’Andecy, Luc VinetList of authors in order
- Landing page
-
https://arxiv.org/abs/2308.12809Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2308.12809Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2308.12809Direct OA link when available
- Concepts
-
Mathematics, Algebra over a field, Pure mathematics, Kravchuk polynomials, Irreducibility, Centralizer and normalizer, Orthogonal polynomials, Recurrence relation, Irreducible representation, Classical orthogonal polynomials, Gegenbauer polynomials, CombinatoricsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
57Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4386185445 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2308.12809 |
| ids.doi | https://doi.org/10.48550/arxiv.2308.12809 |
| ids.openalex | https://openalex.org/W4386185445 |
| fwci | 0.0 |
| type | preprint |
| title | Matrix elements of $SO(3)$ in $sl_3$ representations as bispectral multivariate functions |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T12748 |
| topics[0].field.id | https://openalex.org/fields/16 |
| topics[0].field.display_name | Chemistry |
| topics[0].score | 0.995199978351593 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1607 |
| topics[0].subfield.display_name | Spectroscopy |
| topics[0].display_name | Molecular spectroscopy and chirality |
| topics[1].id | https://openalex.org/T10948 |
| topics[1].field.id | https://openalex.org/fields/26 |
| topics[1].field.display_name | Mathematics |
| topics[1].score | 0.9943000078201294 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2607 |
| topics[1].subfield.display_name | Discrete Mathematics and Combinatorics |
| topics[1].display_name | Advanced Combinatorial Mathematics |
| topics[2].id | https://openalex.org/T10248 |
| topics[2].field.id | https://openalex.org/fields/31 |
| topics[2].field.display_name | Physics and Astronomy |
| topics[2].score | 0.9933000206947327 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/3109 |
| topics[2].subfield.display_name | Statistical and Nonlinear Physics |
| topics[2].display_name | Nonlinear Waves and Solitons |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C33923547 |
| concepts[0].level | 0 |
| concepts[0].score | 0.7456062436103821 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[0].display_name | Mathematics |
| concepts[1].id | https://openalex.org/C136119220 |
| concepts[1].level | 2 |
| concepts[1].score | 0.5523208975791931 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1000660 |
| concepts[1].display_name | Algebra over a field |
| concepts[2].id | https://openalex.org/C202444582 |
| concepts[2].level | 1 |
| concepts[2].score | 0.5484392046928406 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q837863 |
| concepts[2].display_name | Pure mathematics |
| concepts[3].id | https://openalex.org/C118797610 |
| concepts[3].level | 5 |
| concepts[3].score | 0.5387538075447083 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q4298931 |
| concepts[3].display_name | Kravchuk polynomials |
| concepts[4].id | https://openalex.org/C2776823524 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5307885408401489 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q6073561 |
| concepts[4].display_name | Irreducibility |
| concepts[5].id | https://openalex.org/C75174853 |
| concepts[5].level | 2 |
| concepts[5].score | 0.498065710067749 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q190629 |
| concepts[5].display_name | Centralizer and normalizer |
| concepts[6].id | https://openalex.org/C10628310 |
| concepts[6].level | 2 |
| concepts[6].score | 0.48762860894203186 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q619458 |
| concepts[6].display_name | Orthogonal polynomials |
| concepts[7].id | https://openalex.org/C201292218 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4862343370914459 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q740970 |
| concepts[7].display_name | Recurrence relation |
| concepts[8].id | https://openalex.org/C142292226 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4120379686355591 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q13690522 |
| concepts[8].display_name | Irreducible representation |
| concepts[9].id | https://openalex.org/C21736991 |
| concepts[9].level | 3 |
| concepts[9].score | 0.3878832459449768 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q17006917 |
| concepts[9].display_name | Classical orthogonal polynomials |
| concepts[10].id | https://openalex.org/C78540521 |
| concepts[10].level | 4 |
| concepts[10].score | 0.3450871706008911 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q1498246 |
| concepts[10].display_name | Gegenbauer polynomials |
| concepts[11].id | https://openalex.org/C114614502 |
| concepts[11].level | 1 |
| concepts[11].score | 0.3084278106689453 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q76592 |
| concepts[11].display_name | Combinatorics |
| keywords[0].id | https://openalex.org/keywords/mathematics |
| keywords[0].score | 0.7456062436103821 |
| keywords[0].display_name | Mathematics |
| keywords[1].id | https://openalex.org/keywords/algebra-over-a-field |
| keywords[1].score | 0.5523208975791931 |
| keywords[1].display_name | Algebra over a field |
| keywords[2].id | https://openalex.org/keywords/pure-mathematics |
| keywords[2].score | 0.5484392046928406 |
| keywords[2].display_name | Pure mathematics |
| keywords[3].id | https://openalex.org/keywords/kravchuk-polynomials |
| keywords[3].score | 0.5387538075447083 |
| keywords[3].display_name | Kravchuk polynomials |
| keywords[4].id | https://openalex.org/keywords/irreducibility |
| keywords[4].score | 0.5307885408401489 |
| keywords[4].display_name | Irreducibility |
| keywords[5].id | https://openalex.org/keywords/centralizer-and-normalizer |
| keywords[5].score | 0.498065710067749 |
| keywords[5].display_name | Centralizer and normalizer |
| keywords[6].id | https://openalex.org/keywords/orthogonal-polynomials |
| keywords[6].score | 0.48762860894203186 |
| keywords[6].display_name | Orthogonal polynomials |
| keywords[7].id | https://openalex.org/keywords/recurrence-relation |
| keywords[7].score | 0.4862343370914459 |
| keywords[7].display_name | Recurrence relation |
| keywords[8].id | https://openalex.org/keywords/irreducible-representation |
| keywords[8].score | 0.4120379686355591 |
| keywords[8].display_name | Irreducible representation |
| keywords[9].id | https://openalex.org/keywords/classical-orthogonal-polynomials |
| keywords[9].score | 0.3878832459449768 |
| keywords[9].display_name | Classical orthogonal polynomials |
| keywords[10].id | https://openalex.org/keywords/gegenbauer-polynomials |
| keywords[10].score | 0.3450871706008911 |
| keywords[10].display_name | Gegenbauer polynomials |
| keywords[11].id | https://openalex.org/keywords/combinatorics |
| keywords[11].score | 0.3084278106689453 |
| keywords[11].display_name | Combinatorics |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2308.12809 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2308.12809 |
| locations[0].version | acceptedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2308.12809 |
| locations[1].id | doi:10.48550/arxiv.2308.12809 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article-journal |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2308.12809 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5032014824 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-3754-4074 |
| authorships[0].author.display_name | Nicolas Crampé |
| authorships[0].countries | FR |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I110017253, https://openalex.org/I12449238, https://openalex.org/I1294671590 |
| authorships[0].affiliations[0].raw_affiliation_string | Institut Denis-Poisson CNRS/UMR 7013 -Université de Tours -Université d'Orléans, Parc de Grandmont, 37200 Tours, France. |
| authorships[0].institutions[0].id | https://openalex.org/I1294671590 |
| authorships[0].institutions[0].ror | https://ror.org/02feahw73 |
| authorships[0].institutions[0].type | government |
| authorships[0].institutions[0].lineage | https://openalex.org/I1294671590 |
| authorships[0].institutions[0].country_code | FR |
| authorships[0].institutions[0].display_name | Centre National de la Recherche Scientifique |
| authorships[0].institutions[1].id | https://openalex.org/I12449238 |
| authorships[0].institutions[1].ror | https://ror.org/014zrew76 |
| authorships[0].institutions[1].type | education |
| authorships[0].institutions[1].lineage | https://openalex.org/I12449238 |
| authorships[0].institutions[1].country_code | FR |
| authorships[0].institutions[1].display_name | Université d'Orléans |
| authorships[0].institutions[2].id | https://openalex.org/I110017253 |
| authorships[0].institutions[2].ror | https://ror.org/02wwzvj46 |
| authorships[0].institutions[2].type | education |
| authorships[0].institutions[2].lineage | https://openalex.org/I110017253 |
| authorships[0].institutions[2].country_code | FR |
| authorships[0].institutions[2].display_name | Université de Tours |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Nicolas Crampe |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Institut Denis-Poisson CNRS/UMR 7013 -Université de Tours -Université d'Orléans, Parc de Grandmont, 37200 Tours, France. |
| authorships[1].author.id | https://openalex.org/A5065376417 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-3846-2695 |
| authorships[1].author.display_name | Julien Gaboriaud |
| authorships[1].countries | JP |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I22299242 |
| authorships[1].affiliations[0].raw_affiliation_string | Graduate School of Informatics, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan. |
| authorships[1].institutions[0].id | https://openalex.org/I22299242 |
| authorships[1].institutions[0].ror | https://ror.org/02kpeqv85 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I22299242 |
| authorships[1].institutions[0].country_code | JP |
| authorships[1].institutions[0].display_name | Kyoto University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Julien Gaboriaud |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Graduate School of Informatics, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan. |
| authorships[2].author.id | https://openalex.org/A5081554712 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-0823-834X |
| authorships[2].author.display_name | Loïc Poulain d’Andecy |
| authorships[2].countries | FR |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I4387156098, https://openalex.org/I96226040 |
| authorships[2].affiliations[0].raw_affiliation_string | Laboratoire de mathématiques de Reims UMR 9008, Université de Reims Champagne-Ardenne, Moulin de la Housse BP 1039, 51100 Reims, France. |
| authorships[2].institutions[0].id | https://openalex.org/I4387156098 |
| authorships[2].institutions[0].ror | https://ror.org/01xkfnd03 |
| authorships[2].institutions[0].type | facility |
| authorships[2].institutions[0].lineage | https://openalex.org/I1294671590, https://openalex.org/I4387156098, https://openalex.org/I96226040 |
| authorships[2].institutions[0].country_code | |
| authorships[2].institutions[0].display_name | Laboratoire de Mathématiques de Reims |
| authorships[2].institutions[1].id | https://openalex.org/I96226040 |
| authorships[2].institutions[1].ror | https://ror.org/03hypw319 |
| authorships[2].institutions[1].type | education |
| authorships[2].institutions[1].lineage | https://openalex.org/I96226040 |
| authorships[2].institutions[1].country_code | FR |
| authorships[2].institutions[1].display_name | Université de Reims Champagne-Ardenne |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | d'Andecy, Loïc Poulain |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Laboratoire de mathématiques de Reims UMR 9008, Université de Reims Champagne-Ardenne, Moulin de la Housse BP 1039, 51100 Reims, France. |
| authorships[3].author.id | https://openalex.org/A5066370290 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-6211-7907 |
| authorships[3].author.display_name | Luc Vinet |
| authorships[3].countries | CA |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I70931966 |
| authorships[3].affiliations[0].raw_affiliation_string | Centre de Recherches Mathématiques, Université de Montréal, P.O. Box 6128, Centre-ville Station, Montréal (Québec), H3C 3J7, Canada. |
| authorships[3].affiliations[1].raw_affiliation_string | IVADO, Montréal (Québec), H2S 3H1, Canada. |
| authorships[3].institutions[0].id | https://openalex.org/I70931966 |
| authorships[3].institutions[0].ror | https://ror.org/0161xgx34 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I70931966 |
| authorships[3].institutions[0].country_code | CA |
| authorships[3].institutions[0].display_name | Université de Montréal |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Vinet, Luc |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Centre de Recherches Mathématiques, Université de Montréal, P.O. Box 6128, Centre-ville Station, Montréal (Québec), H3C 3J7, Canada., IVADO, Montréal (Québec), H2S 3H1, Canada. |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2308.12809 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2023-08-26T00:00:00 |
| display_name | Matrix elements of $SO(3)$ in $sl_3$ representations as bispectral multivariate functions |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T12748 |
| primary_topic.field.id | https://openalex.org/fields/16 |
| primary_topic.field.display_name | Chemistry |
| primary_topic.score | 0.995199978351593 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1607 |
| primary_topic.subfield.display_name | Spectroscopy |
| primary_topic.display_name | Molecular spectroscopy and chirality |
| related_works | https://openalex.org/W2046062960, https://openalex.org/W27009688, https://openalex.org/W936279937, https://openalex.org/W2010340235, https://openalex.org/W645607024, https://openalex.org/W2011553910, https://openalex.org/W2052308123, https://openalex.org/W2072647369, https://openalex.org/W2085028572, https://openalex.org/W101473165 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2308.12809 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2308.12809 |
| best_oa_location.version | acceptedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2308.12809 |
| primary_location.id | pmh:oai:arXiv.org:2308.12809 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2308.12809 |
| primary_location.version | acceptedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2308.12809 |
| publication_date | 2023-08-24 |
| publication_year | 2023 |
| referenced_works | https://openalex.org/W3046144915, https://openalex.org/W3106407549, https://openalex.org/W2072354355, https://openalex.org/W2013297857, https://openalex.org/W2989712493, https://openalex.org/W2156518940, https://openalex.org/W3102643948, https://openalex.org/W2963864966, https://openalex.org/W2122410084, https://openalex.org/W2120625124, https://openalex.org/W2142568486, https://openalex.org/W1560806347, https://openalex.org/W2982186283, https://openalex.org/W2040877180, https://openalex.org/W3100353180, https://openalex.org/W1529624363, https://openalex.org/W2889513826, https://openalex.org/W2014186635, https://openalex.org/W2067691869, https://openalex.org/W1997757324, https://openalex.org/W2112743662, https://openalex.org/W3100649705, https://openalex.org/W2232532260, https://openalex.org/W2039392241, https://openalex.org/W2148677738, https://openalex.org/W2044644971, https://openalex.org/W2963417013, https://openalex.org/W3093839076, https://openalex.org/W4300879736, https://openalex.org/W2988341802, https://openalex.org/W4220943658, https://openalex.org/W3099066170, https://openalex.org/W4229751596, https://openalex.org/W4312107674, https://openalex.org/W1967243671, https://openalex.org/W3106038699, https://openalex.org/W3105250059, https://openalex.org/W4283210340, https://openalex.org/W2963058294, https://openalex.org/W1670159191, https://openalex.org/W1579989194, https://openalex.org/W1244770280, https://openalex.org/W3215833336, https://openalex.org/W2023257034, https://openalex.org/W2147715530, https://openalex.org/W4387924186, https://openalex.org/W2087651092, https://openalex.org/W1737822678, https://openalex.org/W4403943523, https://openalex.org/W3102697275, https://openalex.org/W152666821, https://openalex.org/W3098873912, https://openalex.org/W3117865898, https://openalex.org/W4317771630, https://openalex.org/W1971245105, https://openalex.org/W3104334436, https://openalex.org/W2196559987 |
| referenced_works_count | 57 |
| abstract_inverted_index.a | 20, 55, 66 |
| abstract_inverted_index.We | 0, 123 |
| abstract_inverted_index.as | 42 |
| abstract_inverted_index.by | 101 |
| abstract_inverted_index.in | 7, 17, 59, 73, 95, 116, 133 |
| abstract_inverted_index.is | 49, 77, 98, 144 |
| abstract_inverted_index.of | 5, 12, 19, 23, 25, 44, 54, 61, 71, 92, 114, 135 |
| abstract_inverted_index.on | 51 |
| abstract_inverted_index.to | 79, 86, 110 |
| abstract_inverted_index.The | 47, 75, 90 |
| abstract_inverted_index.and | 27, 37, 65, 83, 139 |
| abstract_inverted_index.any | 8 |
| abstract_inverted_index.are | 15, 40 |
| abstract_inverted_index.its | 140 |
| abstract_inverted_index.our | 45 |
| abstract_inverted_index.sum | 22 |
| abstract_inverted_index.the | 2, 32, 52, 84, 104, 111, 119, 131, 136 |
| abstract_inverted_index.two | 69, 105, 112, 128 |
| abstract_inverted_index.They | 14 |
| abstract_inverted_index.also | 124 |
| abstract_inverted_index.obey | 118 |
| abstract_inverted_index.show | 125 |
| abstract_inverted_index.that | 103, 126 |
| abstract_inverted_index.this | 96 |
| abstract_inverted_index.Racah | 28, 88, 93, 120 |
| abstract_inverted_index.Their | 35 |
| abstract_inverted_index.based | 50 |
| abstract_inverted_index.proof | 48 |
| abstract_inverted_index.terms | 18, 60 |
| abstract_inverted_index.these | 127 |
| abstract_inverted_index.which | 30 |
| abstract_inverted_index.$sl_2$ | 72, 106, 115 |
| abstract_inverted_index.$sl_3$ | 117 |
| abstract_inverted_index.Cartan | 137 |
| abstract_inverted_index.double | 21 |
| abstract_inverted_index.former | 76 |
| abstract_inverted_index.given. | 145 |
| abstract_inverted_index.matrix | 3 |
| abstract_inverted_index.planar | 63 |
| abstract_inverted_index.$SO(3)$ | 6 |
| abstract_inverted_index.$sl_3$. | 13, 74 |
| abstract_inverted_index.Casimir | 107 |
| abstract_inverted_index.algebra | 121 |
| abstract_inverted_index.between | 68 |
| abstract_inverted_index.compute | 1 |
| abstract_inverted_index.context | 97 |
| abstract_inverted_index.general | 56 |
| abstract_inverted_index.latter, | 85 |
| abstract_inverted_index.related | 78, 109 |
| abstract_inverted_index.showing | 102 |
| abstract_inverted_index.complete | 141 |
| abstract_inverted_index.elements | 4, 108, 129 |
| abstract_inverted_index.generate | 130 |
| abstract_inverted_index.obtained | 41 |
| abstract_inverted_index.products | 24 |
| abstract_inverted_index.rotation | 58 |
| abstract_inverted_index.$U(sl_3)$ | 134 |
| abstract_inverted_index.algebraic | 142 |
| abstract_inverted_index.explained | 100 |
| abstract_inverted_index.expressed | 16 |
| abstract_inverted_index.relations | 39 |
| abstract_inverted_index.rotations | 64 |
| abstract_inverted_index.Krawtchouk | 26, 81 |
| abstract_inverted_index.appearance | 91 |
| abstract_inverted_index.byproducts | 43 |
| abstract_inverted_index.difference | 38 |
| abstract_inverted_index.elementary | 62 |
| abstract_inverted_index.embeddings | 70, 113 |
| abstract_inverted_index.generalize | 31 |
| abstract_inverted_index.recurrence | 36 |
| abstract_inverted_index.relations. | 122 |
| abstract_inverted_index.subalgebra | 138 |
| abstract_inverted_index.transition | 67 |
| abstract_inverted_index.centralizer | 132 |
| abstract_inverted_index.description | 143 |
| abstract_inverted_index.irreducible | 10 |
| abstract_inverted_index.monovariate | 80, 87 |
| abstract_inverted_index.polynomials | 29, 82, 94 |
| abstract_inverted_index.polynomials. | 34, 89 |
| abstract_inverted_index.algebraically | 99 |
| abstract_inverted_index.construction. | 46 |
| abstract_inverted_index.decomposition | 53 |
| abstract_inverted_index.representation | 11 |
| abstract_inverted_index.three-dimensional | 57 |
| abstract_inverted_index.finite-dimensional | 9 |
| abstract_inverted_index.Griffiths-Krawtchouk | 33 |
| cited_by_percentile_year | |
| countries_distinct_count | 3 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile.value | 0.14829778 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |