MATStruct: High-quality Medial Mesh Computation via Structure-aware Variational Optimization Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1145/3757377.3763840
We propose a novel optimization framework for computing the medial axis transform that simultaneously preserves the medial structure and ensures high medial mesh quality. The medial structure, consisting of interconnected sheets, seams, and junctions, provides a natural volumetric decomposition of a 3D shape. Our method introduces a structure-aware, particle-based optimization pipeline guided by the restricted power diagram (RPD), which partitions the input volume into convex cells whose dual encodes the connectivity of the medial mesh. Structure-awareness is enforced through a spherical quadratic error metric (SQEM) projection that constrains the movement of medial spheres, while a Gaussian kernel energy encourages an even spatial distribution. Compared to feature-preserving methods such as MATFP and MATTopo, our approach produces cleaner and more accurate medial structures with significantly improved mesh quality. In contrast to voxel-based, point-cloud-based, and variational methods, our framework is the first to integrate structural awareness into the optimization process, yielding medial meshes with superior geometric fidelity, topological correctness, and explicit structural decomposition.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1145/3757377.3763840
- OA Status
- gold
- References
- 53
- OpenAlex ID
- https://openalex.org/W4417125337
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4417125337Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1145/3757377.3763840Digital Object Identifier
- Title
-
MATStruct: High-quality Medial Mesh Computation via Structure-aware Variational OptimizationWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-12-08Full publication date if available
- Authors
-
Ningna Wang, Rui Xu, Y.M. Wang H.L. Yin, Zichun Zhong, Taku Komura, Wenping Wang, Xiaohu GuoList of authors in order
- Landing page
-
https://doi.org/10.1145/3757377.3763840Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1145/3757377.3763840Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
53Number of works referenced by this work
Full payload
| id | https://openalex.org/W4417125337 |
|---|---|
| doi | https://doi.org/10.1145/3757377.3763840 |
| ids.doi | https://doi.org/10.1145/3757377.3763840 |
| ids.openalex | https://openalex.org/W4417125337 |
| fwci | |
| type | article |
| title | MATStruct: High-quality Medial Mesh Computation via Structure-aware Variational Optimization |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | 12 |
| biblio.first_page | 1 |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| language | en |
| locations[0].id | doi:10.1145/3757377.3763840 |
| locations[0].is_oa | True |
| locations[0].source | |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | proceedings-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Proceedings of the SIGGRAPH Asia 2025 Conference Papers |
| locations[0].landing_page_url | https://doi.org/10.1145/3757377.3763840 |
| locations[1].id | pmh:oai:arXiv.org:2510.10751 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | https://arxiv.org/pdf/2510.10751 |
| locations[1].version | submittedVersion |
| locations[1].raw_type | text |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | http://arxiv.org/abs/2510.10751 |
| indexed_in | arxiv, crossref |
| authorships[0].author.id | https://openalex.org/A5071499548 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-7995-9681 |
| authorships[0].author.display_name | Ningna Wang |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I162577319 |
| authorships[0].affiliations[0].raw_affiliation_string | University of Texas at Dallas, Richardson, USA |
| authorships[0].institutions[0].id | https://openalex.org/I162577319 |
| authorships[0].institutions[0].ror | https://ror.org/049emcs32 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I162577319 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | The University of Texas at Dallas |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Ningna Wang |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | University of Texas at Dallas, Richardson, USA |
| authorships[1].author.id | https://openalex.org/A5101844661 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-8273-1808 |
| authorships[1].author.display_name | Rui Xu |
| authorships[1].countries | HK |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I889458895 |
| authorships[1].affiliations[0].raw_affiliation_string | University of Hong Kong, Hong Kong, China |
| authorships[1].institutions[0].id | https://openalex.org/I889458895 |
| authorships[1].institutions[0].ror | https://ror.org/02zhqgq86 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I889458895 |
| authorships[1].institutions[0].country_code | HK |
| authorships[1].institutions[0].display_name | University of Hong Kong |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Rui Xu |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | University of Hong Kong, Hong Kong, China |
| authorships[2].author.id | https://openalex.org/A5113777046 |
| authorships[2].author.orcid | https://orcid.org/0009-0009-1799-106X |
| authorships[2].author.display_name | Y.M. Wang H.L. Yin |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I37461747 |
| authorships[2].affiliations[0].raw_affiliation_string | Wuhan University, Wuhan, China |
| authorships[2].institutions[0].id | https://openalex.org/I37461747 |
| authorships[2].institutions[0].ror | https://ror.org/033vjfk17 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I37461747 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Wuhan University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Yibo Yin |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Wuhan University, Wuhan, China |
| authorships[3].author.id | https://openalex.org/A5082598478 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-6489-6502 |
| authorships[3].author.display_name | Zichun Zhong |
| authorships[3].countries | US |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I185443292 |
| authorships[3].affiliations[0].raw_affiliation_string | Wayne State University, Detroit, USA |
| authorships[3].institutions[0].id | https://openalex.org/I185443292 |
| authorships[3].institutions[0].ror | https://ror.org/01070mq45 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I185443292 |
| authorships[3].institutions[0].country_code | US |
| authorships[3].institutions[0].display_name | Wayne State University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Zichun Zhong |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Wayne State University, Detroit, USA |
| authorships[4].author.id | https://openalex.org/A5014324841 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-2729-5860 |
| authorships[4].author.display_name | Taku Komura |
| authorships[4].countries | HK |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I889458895 |
| authorships[4].affiliations[0].raw_affiliation_string | University of Hong Kong, Hong Kong, China |
| authorships[4].institutions[0].id | https://openalex.org/I889458895 |
| authorships[4].institutions[0].ror | https://ror.org/02zhqgq86 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I889458895 |
| authorships[4].institutions[0].country_code | HK |
| authorships[4].institutions[0].display_name | University of Hong Kong |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Taku Komura |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | University of Hong Kong, Hong Kong, China |
| authorships[5].author.id | https://openalex.org/A5100668416 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-2284-3952 |
| authorships[5].author.display_name | Wenping Wang |
| authorships[5].countries | US |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I91045830 |
| authorships[5].affiliations[0].raw_affiliation_string | Texas A&M University, College Station, USA |
| authorships[5].institutions[0].id | https://openalex.org/I91045830 |
| authorships[5].institutions[0].ror | https://ror.org/01f5ytq51 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I91045830 |
| authorships[5].institutions[0].country_code | US |
| authorships[5].institutions[0].display_name | Texas A&M University |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Wenping Wang |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Texas A&M University, College Station, USA |
| authorships[6].author.id | https://openalex.org/A5030253345 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-7610-6923 |
| authorships[6].author.display_name | Xiaohu Guo |
| authorships[6].countries | US |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I162577319 |
| authorships[6].affiliations[0].raw_affiliation_string | University of Texas at Dallas, Richardson, USA |
| authorships[6].institutions[0].id | https://openalex.org/I162577319 |
| authorships[6].institutions[0].ror | https://ror.org/049emcs32 |
| authorships[6].institutions[0].type | education |
| authorships[6].institutions[0].lineage | https://openalex.org/I162577319 |
| authorships[6].institutions[0].country_code | US |
| authorships[6].institutions[0].display_name | The University of Texas at Dallas |
| authorships[6].author_position | last |
| authorships[6].raw_author_name | Xiaohu Guo |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | University of Texas at Dallas, Richardson, USA |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1145/3757377.3763840 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-15T00:00:00 |
| display_name | MATStruct: High-quality Medial Mesh Computation via Structure-aware Variational Optimization |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-12-10T02:45:41.426853 |
| primary_topic | |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | doi:10.1145/3757377.3763840 |
| best_oa_location.is_oa | True |
| best_oa_location.source | |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | proceedings-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Proceedings of the SIGGRAPH Asia 2025 Conference Papers |
| best_oa_location.landing_page_url | https://doi.org/10.1145/3757377.3763840 |
| primary_location.id | doi:10.1145/3757377.3763840 |
| primary_location.is_oa | True |
| primary_location.source | |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | proceedings-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Proceedings of the SIGGRAPH Asia 2025 Conference Papers |
| primary_location.landing_page_url | https://doi.org/10.1145/3757377.3763840 |
| publication_date | 2025-12-08 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W2915838288, https://openalex.org/W2020065037, https://openalex.org/W2123577201, https://openalex.org/W2101153879, https://openalex.org/W2115920764, https://openalex.org/W2148619227, https://openalex.org/W2031894851, https://openalex.org/W4381051139, https://openalex.org/W1977276706, https://openalex.org/W1966159541, https://openalex.org/W2911001378, https://openalex.org/W3204405814, https://openalex.org/W2051752778, https://openalex.org/W2077976550, https://openalex.org/W2065139213, https://openalex.org/W4384700587, https://openalex.org/W2172431334, https://openalex.org/W2159584837, https://openalex.org/W2097943569, https://openalex.org/W4281393945, https://openalex.org/W2964889944, https://openalex.org/W4387968005, https://openalex.org/W3048473624, https://openalex.org/W4402387632, https://openalex.org/W2126361698, https://openalex.org/W1975982864, https://openalex.org/W2972931660, https://openalex.org/W886281537, https://openalex.org/W2143112496, https://openalex.org/W2270381286, https://openalex.org/W3181584201, https://openalex.org/W2051434435, https://openalex.org/W2021563983, https://openalex.org/W4230378590, https://openalex.org/W2106990937, https://openalex.org/W2142876311, https://openalex.org/W1570514300, https://openalex.org/W1979675160, https://openalex.org/W2042353183, https://openalex.org/W2339234205, https://openalex.org/W4412596308, https://openalex.org/W1976955994, https://openalex.org/W4404525468, https://openalex.org/W4311805700, https://openalex.org/W4401173840, https://openalex.org/W4239179032, https://openalex.org/W4400820990, https://openalex.org/W4310924423, https://openalex.org/W2809774165, https://openalex.org/W2468102300, https://openalex.org/W2898334690, https://openalex.org/W3024451790, https://openalex.org/W2024403957 |
| referenced_works_count | 53 |
| abstract_inverted_index.a | 2, 35, 40, 46, 79, 94 |
| abstract_inverted_index.3D | 41 |
| abstract_inverted_index.In | 126 |
| abstract_inverted_index.We | 0 |
| abstract_inverted_index.an | 99 |
| abstract_inverted_index.as | 108 |
| abstract_inverted_index.by | 52 |
| abstract_inverted_index.is | 76, 136 |
| abstract_inverted_index.of | 28, 39, 71, 90 |
| abstract_inverted_index.to | 104, 128, 139 |
| abstract_inverted_index.Our | 43 |
| abstract_inverted_index.The | 24 |
| abstract_inverted_index.and | 18, 32, 110, 116, 131, 156 |
| abstract_inverted_index.for | 6 |
| abstract_inverted_index.our | 112, 134 |
| abstract_inverted_index.the | 8, 15, 53, 60, 69, 72, 88, 137, 144 |
| abstract_inverted_index.axis | 10 |
| abstract_inverted_index.dual | 67 |
| abstract_inverted_index.even | 100 |
| abstract_inverted_index.high | 20 |
| abstract_inverted_index.into | 63, 143 |
| abstract_inverted_index.mesh | 22, 124 |
| abstract_inverted_index.more | 117 |
| abstract_inverted_index.such | 107 |
| abstract_inverted_index.that | 12, 86 |
| abstract_inverted_index.with | 121, 150 |
| abstract_inverted_index.MATFP | 109 |
| abstract_inverted_index.cells | 65 |
| abstract_inverted_index.error | 82 |
| abstract_inverted_index.first | 138 |
| abstract_inverted_index.input | 61 |
| abstract_inverted_index.mesh. | 74 |
| abstract_inverted_index.novel | 3 |
| abstract_inverted_index.power | 55 |
| abstract_inverted_index.which | 58 |
| abstract_inverted_index.while | 93 |
| abstract_inverted_index.whose | 66 |
| abstract_inverted_index.(RPD), | 57 |
| abstract_inverted_index.(SQEM) | 84 |
| abstract_inverted_index.convex | 64 |
| abstract_inverted_index.energy | 97 |
| abstract_inverted_index.guided | 51 |
| abstract_inverted_index.kernel | 96 |
| abstract_inverted_index.medial | 9, 16, 21, 25, 73, 91, 119, 148 |
| abstract_inverted_index.meshes | 149 |
| abstract_inverted_index.method | 44 |
| abstract_inverted_index.metric | 83 |
| abstract_inverted_index.seams, | 31 |
| abstract_inverted_index.shape. | 42 |
| abstract_inverted_index.volume | 62 |
| abstract_inverted_index.cleaner | 115 |
| abstract_inverted_index.diagram | 56 |
| abstract_inverted_index.encodes | 68 |
| abstract_inverted_index.ensures | 19 |
| abstract_inverted_index.methods | 106 |
| abstract_inverted_index.natural | 36 |
| abstract_inverted_index.propose | 1 |
| abstract_inverted_index.sheets, | 30 |
| abstract_inverted_index.spatial | 101 |
| abstract_inverted_index.through | 78 |
| abstract_inverted_index.Compared | 103 |
| abstract_inverted_index.Gaussian | 95 |
| abstract_inverted_index.MATTopo, | 111 |
| abstract_inverted_index.accurate | 118 |
| abstract_inverted_index.approach | 113 |
| abstract_inverted_index.contrast | 127 |
| abstract_inverted_index.enforced | 77 |
| abstract_inverted_index.explicit | 157 |
| abstract_inverted_index.improved | 123 |
| abstract_inverted_index.methods, | 133 |
| abstract_inverted_index.movement | 89 |
| abstract_inverted_index.pipeline | 50 |
| abstract_inverted_index.process, | 146 |
| abstract_inverted_index.produces | 114 |
| abstract_inverted_index.provides | 34 |
| abstract_inverted_index.quality. | 23, 125 |
| abstract_inverted_index.spheres, | 92 |
| abstract_inverted_index.superior | 151 |
| abstract_inverted_index.yielding | 147 |
| abstract_inverted_index.awareness | 142 |
| abstract_inverted_index.computing | 7 |
| abstract_inverted_index.fidelity, | 153 |
| abstract_inverted_index.framework | 5, 135 |
| abstract_inverted_index.geometric | 152 |
| abstract_inverted_index.integrate | 140 |
| abstract_inverted_index.preserves | 14 |
| abstract_inverted_index.quadratic | 81 |
| abstract_inverted_index.spherical | 80 |
| abstract_inverted_index.structure | 17 |
| abstract_inverted_index.transform | 11 |
| abstract_inverted_index.consisting | 27 |
| abstract_inverted_index.constrains | 87 |
| abstract_inverted_index.encourages | 98 |
| abstract_inverted_index.introduces | 45 |
| abstract_inverted_index.junctions, | 33 |
| abstract_inverted_index.partitions | 59 |
| abstract_inverted_index.projection | 85 |
| abstract_inverted_index.restricted | 54 |
| abstract_inverted_index.structural | 141, 158 |
| abstract_inverted_index.structure, | 26 |
| abstract_inverted_index.structures | 120 |
| abstract_inverted_index.volumetric | 37 |
| abstract_inverted_index.topological | 154 |
| abstract_inverted_index.variational | 132 |
| abstract_inverted_index.connectivity | 70 |
| abstract_inverted_index.correctness, | 155 |
| abstract_inverted_index.optimization | 4, 49, 145 |
| abstract_inverted_index.voxel-based, | 129 |
| abstract_inverted_index.decomposition | 38 |
| abstract_inverted_index.distribution. | 102 |
| abstract_inverted_index.significantly | 122 |
| abstract_inverted_index.decomposition. | 159 |
| abstract_inverted_index.interconnected | 29 |
| abstract_inverted_index.particle-based | 48 |
| abstract_inverted_index.simultaneously | 13 |
| abstract_inverted_index.structure-aware, | 47 |
| abstract_inverted_index.feature-preserving | 105 |
| abstract_inverted_index.point-cloud-based, | 130 |
| abstract_inverted_index.Structure-awareness | 75 |
| cited_by_percentile_year | |
| countries_distinct_count | 3 |
| institutions_distinct_count | 7 |
| citation_normalized_percentile |