Maximal commutative unipotent subgroups and a characterization of affine spherical varieties Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.4171/jems/1651
We describe maximal commutative unipotent subgroups of the automorphism group \mathrm{Aut}(X) of an irreducible affine variety X . Furthermore, we show that a group isomorphism \mathrm{Aut}(X) \allowbreak\to \mathrm{Aut}(Y) maps unipotent elements to unipotent elements, where Y is irreducible and affine. Using this result, we show that the automorphism group detects sphericity and the weight monoid.As an application, we show that an affine toric variety different from an algebraic torus is determined by its automorphism group among normal irreducible affine varieties, and we show that a smooth affine spherical variety different from an algebraic torus is determined by its automorphism group (up to an automorphism of the base field) among smooth irreducible affine varieties. This generalizes results obtained by Cantat, Kraft, Liendo, Urech, Xie and the authors.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.4171/jems/1651
- OA Status
- diamond
- Cited By
- 1
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4410213482
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4410213482Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.4171/jems/1651Digital Object Identifier
- Title
-
Maximal commutative unipotent subgroups and a characterization of affine spherical varietiesWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-05-08Full publication date if available
- Authors
-
Andriy Regeta, Immanuel van SantenList of authors in order
- Landing page
-
https://doi.org/10.4171/jems/1651Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.4171/jems/1651Direct OA link when available
- Concepts
-
Unipotent, Mathematics, Affine transformation, Commutative property, Characterization (materials science), Pure mathematics, Commutative ring, Algebra over a field, Nanotechnology, Materials scienceTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4410213482 |
|---|---|
| doi | https://doi.org/10.4171/jems/1651 |
| ids.doi | https://doi.org/10.4171/jems/1651 |
| ids.openalex | https://openalex.org/W4410213482 |
| fwci | 10.10914745 |
| type | article |
| title | Maximal commutative unipotent subgroups and a characterization of affine spherical varieties |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11680 |
| topics[0].field.id | https://openalex.org/fields/26 |
| topics[0].field.display_name | Mathematics |
| topics[0].score | 0.9998000264167786 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2610 |
| topics[0].subfield.display_name | Mathematical Physics |
| topics[0].display_name | Advanced Algebra and Geometry |
| topics[1].id | https://openalex.org/T10849 |
| topics[1].field.id | https://openalex.org/fields/26 |
| topics[1].field.display_name | Mathematics |
| topics[1].score | 0.9879000186920166 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2607 |
| topics[1].subfield.display_name | Discrete Mathematics and Combinatorics |
| topics[1].display_name | Finite Group Theory Research |
| topics[2].id | https://openalex.org/T11673 |
| topics[2].field.id | https://openalex.org/fields/26 |
| topics[2].field.display_name | Mathematics |
| topics[2].score | 0.9876000285148621 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2602 |
| topics[2].subfield.display_name | Algebra and Number Theory |
| topics[2].display_name | Advanced Topics in Algebra |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C205633959 |
| concepts[0].level | 2 |
| concepts[0].score | 0.9533238410949707 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q2494915 |
| concepts[0].display_name | Unipotent |
| concepts[1].id | https://openalex.org/C33923547 |
| concepts[1].level | 0 |
| concepts[1].score | 0.9500843286514282 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[1].display_name | Mathematics |
| concepts[2].id | https://openalex.org/C92757383 |
| concepts[2].level | 2 |
| concepts[2].score | 0.7500163316726685 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q382497 |
| concepts[2].display_name | Affine transformation |
| concepts[3].id | https://openalex.org/C183778304 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6906226873397827 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q165474 |
| concepts[3].display_name | Commutative property |
| concepts[4].id | https://openalex.org/C2780841128 |
| concepts[4].level | 2 |
| concepts[4].score | 0.6800792217254639 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q5073781 |
| concepts[4].display_name | Characterization (materials science) |
| concepts[5].id | https://openalex.org/C202444582 |
| concepts[5].level | 1 |
| concepts[5].score | 0.6240758299827576 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q837863 |
| concepts[5].display_name | Pure mathematics |
| concepts[6].id | https://openalex.org/C161491579 |
| concepts[6].level | 3 |
| concepts[6].score | 0.41069236397743225 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q858656 |
| concepts[6].display_name | Commutative ring |
| concepts[7].id | https://openalex.org/C136119220 |
| concepts[7].level | 2 |
| concepts[7].score | 0.38794368505477905 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q1000660 |
| concepts[7].display_name | Algebra over a field |
| concepts[8].id | https://openalex.org/C171250308 |
| concepts[8].level | 1 |
| concepts[8].score | 0.0 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q11468 |
| concepts[8].display_name | Nanotechnology |
| concepts[9].id | https://openalex.org/C192562407 |
| concepts[9].level | 0 |
| concepts[9].score | 0.0 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q228736 |
| concepts[9].display_name | Materials science |
| keywords[0].id | https://openalex.org/keywords/unipotent |
| keywords[0].score | 0.9533238410949707 |
| keywords[0].display_name | Unipotent |
| keywords[1].id | https://openalex.org/keywords/mathematics |
| keywords[1].score | 0.9500843286514282 |
| keywords[1].display_name | Mathematics |
| keywords[2].id | https://openalex.org/keywords/affine-transformation |
| keywords[2].score | 0.7500163316726685 |
| keywords[2].display_name | Affine transformation |
| keywords[3].id | https://openalex.org/keywords/commutative-property |
| keywords[3].score | 0.6906226873397827 |
| keywords[3].display_name | Commutative property |
| keywords[4].id | https://openalex.org/keywords/characterization |
| keywords[4].score | 0.6800792217254639 |
| keywords[4].display_name | Characterization (materials science) |
| keywords[5].id | https://openalex.org/keywords/pure-mathematics |
| keywords[5].score | 0.6240758299827576 |
| keywords[5].display_name | Pure mathematics |
| keywords[6].id | https://openalex.org/keywords/commutative-ring |
| keywords[6].score | 0.41069236397743225 |
| keywords[6].display_name | Commutative ring |
| keywords[7].id | https://openalex.org/keywords/algebra-over-a-field |
| keywords[7].score | 0.38794368505477905 |
| keywords[7].display_name | Algebra over a field |
| language | en |
| locations[0].id | doi:10.4171/jems/1651 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S88235189 |
| locations[0].source.issn | 1435-9855, 1435-9863 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1435-9855 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Journal of the European Mathematical Society |
| locations[0].source.host_organization | https://openalex.org/P4310316982 |
| locations[0].source.host_organization_name | European Mathematical Society |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310316982 |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Journal of the European Mathematical Society |
| locations[0].landing_page_url | https://doi.org/10.4171/jems/1651 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5034200956 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-7990-5421 |
| authorships[0].author.display_name | Andriy Regeta |
| authorships[0].countries | DE |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I76198965 |
| authorships[0].affiliations[0].raw_affiliation_string | Friedrich-Schiller-Universität Jena, Jena, Germany |
| authorships[0].institutions[0].id | https://openalex.org/I76198965 |
| authorships[0].institutions[0].ror | https://ror.org/05qpz1x62 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I76198965 |
| authorships[0].institutions[0].country_code | DE |
| authorships[0].institutions[0].display_name | Friedrich Schiller University Jena |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Andriy Regeta |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Friedrich-Schiller-Universität Jena, Jena, Germany |
| authorships[1].author.id | https://openalex.org/A5061599303 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-9903-829X |
| authorships[1].author.display_name | Immanuel van Santen |
| authorships[1].countries | CH |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I1850255 |
| authorships[1].affiliations[0].raw_affiliation_string | Universität Basel, Basel, Switzerland |
| authorships[1].institutions[0].id | https://openalex.org/I1850255 |
| authorships[1].institutions[0].ror | https://ror.org/02s6k3f65 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I1850255 |
| authorships[1].institutions[0].country_code | CH |
| authorships[1].institutions[0].display_name | University of Basel |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | Immanuel van Santen |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Universität Basel, Basel, Switzerland |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.4171/jems/1651 |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Maximal commutative unipotent subgroups and a characterization of affine spherical varieties |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11680 |
| primary_topic.field.id | https://openalex.org/fields/26 |
| primary_topic.field.display_name | Mathematics |
| primary_topic.score | 0.9998000264167786 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2610 |
| primary_topic.subfield.display_name | Mathematical Physics |
| primary_topic.display_name | Advanced Algebra and Geometry |
| related_works | https://openalex.org/W2514022507, https://openalex.org/W2996403447, https://openalex.org/W4308298797, https://openalex.org/W4255963200, https://openalex.org/W2360590989, https://openalex.org/W2369074270, https://openalex.org/W4255391830, https://openalex.org/W2015466415, https://openalex.org/W2953844587, https://openalex.org/W4288363881 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 1 |
| best_oa_location.id | doi:10.4171/jems/1651 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S88235189 |
| best_oa_location.source.issn | 1435-9855, 1435-9863 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1435-9855 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Journal of the European Mathematical Society |
| best_oa_location.source.host_organization | https://openalex.org/P4310316982 |
| best_oa_location.source.host_organization_name | European Mathematical Society |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310316982 |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Journal of the European Mathematical Society |
| best_oa_location.landing_page_url | https://doi.org/10.4171/jems/1651 |
| primary_location.id | doi:10.4171/jems/1651 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S88235189 |
| primary_location.source.issn | 1435-9855, 1435-9863 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1435-9855 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Journal of the European Mathematical Society |
| primary_location.source.host_organization | https://openalex.org/P4310316982 |
| primary_location.source.host_organization_name | European Mathematical Society |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310316982 |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Journal of the European Mathematical Society |
| primary_location.landing_page_url | https://doi.org/10.4171/jems/1651 |
| publication_date | 2025-05-08 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.. | 17 |
| abstract_inverted_index.X | 16 |
| abstract_inverted_index.Y | 35 |
| abstract_inverted_index.a | 22, 84 |
| abstract_inverted_index.We | 0 |
| abstract_inverted_index.an | 12, 55, 60, 66, 91, 102 |
| abstract_inverted_index.by | 71, 96, 117 |
| abstract_inverted_index.is | 36, 69, 94 |
| abstract_inverted_index.of | 6, 11, 104 |
| abstract_inverted_index.to | 31, 101 |
| abstract_inverted_index.we | 19, 43, 57, 81 |
| abstract_inverted_index.(up | 100 |
| abstract_inverted_index.Xie | 122 |
| abstract_inverted_index.and | 38, 51, 80, 123 |
| abstract_inverted_index.its | 72, 97 |
| abstract_inverted_index.the | 7, 46, 52, 105, 124 |
| abstract_inverted_index.This | 113 |
| abstract_inverted_index.base | 106 |
| abstract_inverted_index.from | 65, 90 |
| abstract_inverted_index.maps | 28 |
| abstract_inverted_index.show | 20, 44, 58, 82 |
| abstract_inverted_index.that | 21, 45, 59, 83 |
| abstract_inverted_index.this | 41 |
| abstract_inverted_index.Using | 40 |
| abstract_inverted_index.among | 75, 108 |
| abstract_inverted_index.group | 9, 23, 48, 74, 99 |
| abstract_inverted_index.toric | 62 |
| abstract_inverted_index.torus | 68, 93 |
| abstract_inverted_index.where | 34 |
| abstract_inverted_index.Kraft, | 119 |
| abstract_inverted_index.Urech, | 121 |
| abstract_inverted_index.affine | 14, 61, 78, 86, 111 |
| abstract_inverted_index.field) | 107 |
| abstract_inverted_index.normal | 76 |
| abstract_inverted_index.smooth | 85, 109 |
| abstract_inverted_index.weight | 53 |
| abstract_inverted_index.Cantat, | 118 |
| abstract_inverted_index.Liendo, | 120 |
| abstract_inverted_index.affine. | 39 |
| abstract_inverted_index.detects | 49 |
| abstract_inverted_index.maximal | 2 |
| abstract_inverted_index.result, | 42 |
| abstract_inverted_index.results | 115 |
| abstract_inverted_index.variety | 15, 63, 88 |
| abstract_inverted_index.authors. | 125 |
| abstract_inverted_index.describe | 1 |
| abstract_inverted_index.elements | 30 |
| abstract_inverted_index.obtained | 116 |
| abstract_inverted_index.algebraic | 67, 92 |
| abstract_inverted_index.different | 64, 89 |
| abstract_inverted_index.elements, | 33 |
| abstract_inverted_index.monoid.As | 54 |
| abstract_inverted_index.spherical | 87 |
| abstract_inverted_index.subgroups | 5 |
| abstract_inverted_index.unipotent | 4, 29, 32 |
| abstract_inverted_index.determined | 70, 95 |
| abstract_inverted_index.sphericity | 50 |
| abstract_inverted_index.varieties, | 79 |
| abstract_inverted_index.varieties. | 112 |
| abstract_inverted_index.commutative | 3 |
| abstract_inverted_index.generalizes | 114 |
| abstract_inverted_index.irreducible | 13, 37, 77, 110 |
| abstract_inverted_index.isomorphism | 24 |
| abstract_inverted_index.Furthermore, | 18 |
| abstract_inverted_index.application, | 56 |
| abstract_inverted_index.automorphism | 8, 47, 73, 98, 103 |
| abstract_inverted_index.\allowbreak\to | 26 |
| abstract_inverted_index.\mathrm{Aut}(X) | 10, 25 |
| abstract_inverted_index.\mathrm{Aut}(Y) | 27 |
| cited_by_percentile_year.max | 95 |
| cited_by_percentile_year.min | 91 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 2 |
| citation_normalized_percentile.value | 0.93437365 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |