MAXIMUM CONSENSUS LOCALIZATION USING LIDAR SENSORS Article Swipe
YOU?
·
· 2021
· Open Access
·
· DOI: https://doi.org/10.5194/isprs-annals-v-2-2021-9-2021
Real world localization tasks based on LiDAR usually face a high proportion of outliers arising from erroneous measurements and changing environments. However, applications such as autonomous driving require a high integrity in all of their components, including localization. Standard localization approaches are often based on (recursive) least squares estimation, for example, using Kalman filters. Since least squares minimization shows a strong susceptibility to outliers, it is not robust.In this paper, we focus on high integrity vehicle localization and investigate a maximum consensus localization strategy. For our work, we use 2975 epochs from a Velodyne VLP-16 scanner (representing the vehicle scan data), and map data obtained using a Riegl VMX-250 mobile mapping system. We investigate the effects of varying scene geometry on the maximum consensus result by exhaustively computing the consensus values for the entire search space. We analyze the deviations in position and heading for a circular course in a downtown area by comparing the estimation results to a reference trajectory, and show the robustness of the maximum consensus localization.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.5194/isprs-annals-v-2-2021-9-2021
- https://www.isprs-ann-photogramm-remote-sens-spatial-inf-sci.net/V-2-2021/9/2021/isprs-annals-V-2-2021-9-2021.pdf
- OA Status
- diamond
- Cited By
- 4
- References
- 25
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W3176334722
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3176334722Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.5194/isprs-annals-v-2-2021-9-2021Digital Object Identifier
- Title
-
MAXIMUM CONSENSUS LOCALIZATION USING LIDAR SENSORSWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2021Year of publication
- Publication date
-
2021-06-17Full publication date if available
- Authors
-
Jeldrik Axmann, Claus BrennerList of authors in order
- Landing page
-
https://doi.org/10.5194/isprs-annals-v-2-2021-9-2021Publisher landing page
- PDF URL
-
https://www.isprs-ann-photogramm-remote-sens-spatial-inf-sci.net/V-2-2021/9/2021/isprs-annals-V-2-2021-9-2021.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://www.isprs-ann-photogramm-remote-sens-spatial-inf-sci.net/V-2-2021/9/2021/isprs-annals-V-2-2021-9-2021.pdfDirect OA link when available
- Concepts
-
Robustness (evolution), Outlier, Computer science, Simultaneous localization and mapping, Heading (navigation), Artificial intelligence, Kalman filter, Lidar, RANSAC, Consensus, Computer vision, Extended Kalman filter, Trajectory, Remote sensing, Geography, Mobile robot, Geodesy, Image (mathematics), Chemistry, Physics, Astronomy, Biochemistry, Gene, Robot, Multi-agent systemTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
4Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1, 2023: 2, 2022: 1Per-year citation counts (last 5 years)
- References (count)
-
25Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3176334722 |
|---|---|
| doi | https://doi.org/10.5194/isprs-annals-v-2-2021-9-2021 |
| ids.doi | https://doi.org/10.5194/isprs-annals-v-2-2021-9-2021 |
| ids.mag | 3176334722 |
| ids.openalex | https://openalex.org/W3176334722 |
| fwci | 0.92170078 |
| type | article |
| title | MAXIMUM CONSENSUS LOCALIZATION USING LIDAR SENSORS |
| biblio.issue | |
| biblio.volume | V-2-2021 |
| biblio.last_page | 16 |
| biblio.first_page | 9 |
| topics[0].id | https://openalex.org/T10191 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9998999834060669 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2202 |
| topics[0].subfield.display_name | Aerospace Engineering |
| topics[0].display_name | Robotics and Sensor-Based Localization |
| topics[1].id | https://openalex.org/T11164 |
| topics[1].field.id | https://openalex.org/fields/23 |
| topics[1].field.display_name | Environmental Science |
| topics[1].score | 0.9988999962806702 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2305 |
| topics[1].subfield.display_name | Environmental Engineering |
| topics[1].display_name | Remote Sensing and LiDAR Applications |
| topics[2].id | https://openalex.org/T10531 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9955000281333923 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1707 |
| topics[2].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[2].display_name | Advanced Vision and Imaging |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C63479239 |
| concepts[0].level | 3 |
| concepts[0].score | 0.7662867903709412 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q7353546 |
| concepts[0].display_name | Robustness (evolution) |
| concepts[1].id | https://openalex.org/C79337645 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7082687020301819 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q779824 |
| concepts[1].display_name | Outlier |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.6571996808052063 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C86369673 |
| concepts[3].level | 4 |
| concepts[3].score | 0.5809964537620544 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q1203659 |
| concepts[3].display_name | Simultaneous localization and mapping |
| concepts[4].id | https://openalex.org/C2776937971 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5502753257751465 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q4384217 |
| concepts[4].display_name | Heading (navigation) |
| concepts[5].id | https://openalex.org/C154945302 |
| concepts[5].level | 1 |
| concepts[5].score | 0.5057482719421387 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[5].display_name | Artificial intelligence |
| concepts[6].id | https://openalex.org/C157286648 |
| concepts[6].level | 2 |
| concepts[6].score | 0.49618014693260193 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q846780 |
| concepts[6].display_name | Kalman filter |
| concepts[7].id | https://openalex.org/C51399673 |
| concepts[7].level | 2 |
| concepts[7].score | 0.493359237909317 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q504027 |
| concepts[7].display_name | Lidar |
| concepts[8].id | https://openalex.org/C114744707 |
| concepts[8].level | 3 |
| concepts[8].score | 0.4805227220058441 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q218533 |
| concepts[8].display_name | RANSAC |
| concepts[9].id | https://openalex.org/C107107730 |
| concepts[9].level | 3 |
| concepts[9].score | 0.4688606858253479 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q2994424 |
| concepts[9].display_name | Consensus |
| concepts[10].id | https://openalex.org/C31972630 |
| concepts[10].level | 1 |
| concepts[10].score | 0.44958260655403137 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[10].display_name | Computer vision |
| concepts[11].id | https://openalex.org/C206833254 |
| concepts[11].level | 3 |
| concepts[11].score | 0.4487815499305725 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q5421817 |
| concepts[11].display_name | Extended Kalman filter |
| concepts[12].id | https://openalex.org/C13662910 |
| concepts[12].level | 2 |
| concepts[12].score | 0.4361172914505005 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q193139 |
| concepts[12].display_name | Trajectory |
| concepts[13].id | https://openalex.org/C62649853 |
| concepts[13].level | 1 |
| concepts[13].score | 0.23257523775100708 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q199687 |
| concepts[13].display_name | Remote sensing |
| concepts[14].id | https://openalex.org/C205649164 |
| concepts[14].level | 0 |
| concepts[14].score | 0.1681033968925476 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[14].display_name | Geography |
| concepts[15].id | https://openalex.org/C19966478 |
| concepts[15].level | 3 |
| concepts[15].score | 0.1329619586467743 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q4810574 |
| concepts[15].display_name | Mobile robot |
| concepts[16].id | https://openalex.org/C13280743 |
| concepts[16].level | 1 |
| concepts[16].score | 0.11963844299316406 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q131089 |
| concepts[16].display_name | Geodesy |
| concepts[17].id | https://openalex.org/C115961682 |
| concepts[17].level | 2 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q860623 |
| concepts[17].display_name | Image (mathematics) |
| concepts[18].id | https://openalex.org/C185592680 |
| concepts[18].level | 0 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q2329 |
| concepts[18].display_name | Chemistry |
| concepts[19].id | https://openalex.org/C121332964 |
| concepts[19].level | 0 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[19].display_name | Physics |
| concepts[20].id | https://openalex.org/C1276947 |
| concepts[20].level | 1 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q333 |
| concepts[20].display_name | Astronomy |
| concepts[21].id | https://openalex.org/C55493867 |
| concepts[21].level | 1 |
| concepts[21].score | 0.0 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q7094 |
| concepts[21].display_name | Biochemistry |
| concepts[22].id | https://openalex.org/C104317684 |
| concepts[22].level | 2 |
| concepts[22].score | 0.0 |
| concepts[22].wikidata | https://www.wikidata.org/wiki/Q7187 |
| concepts[22].display_name | Gene |
| concepts[23].id | https://openalex.org/C90509273 |
| concepts[23].level | 2 |
| concepts[23].score | 0.0 |
| concepts[23].wikidata | https://www.wikidata.org/wiki/Q11012 |
| concepts[23].display_name | Robot |
| concepts[24].id | https://openalex.org/C41550386 |
| concepts[24].level | 2 |
| concepts[24].score | 0.0 |
| concepts[24].wikidata | https://www.wikidata.org/wiki/Q529909 |
| concepts[24].display_name | Multi-agent system |
| keywords[0].id | https://openalex.org/keywords/robustness |
| keywords[0].score | 0.7662867903709412 |
| keywords[0].display_name | Robustness (evolution) |
| keywords[1].id | https://openalex.org/keywords/outlier |
| keywords[1].score | 0.7082687020301819 |
| keywords[1].display_name | Outlier |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.6571996808052063 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/simultaneous-localization-and-mapping |
| keywords[3].score | 0.5809964537620544 |
| keywords[3].display_name | Simultaneous localization and mapping |
| keywords[4].id | https://openalex.org/keywords/heading |
| keywords[4].score | 0.5502753257751465 |
| keywords[4].display_name | Heading (navigation) |
| keywords[5].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[5].score | 0.5057482719421387 |
| keywords[5].display_name | Artificial intelligence |
| keywords[6].id | https://openalex.org/keywords/kalman-filter |
| keywords[6].score | 0.49618014693260193 |
| keywords[6].display_name | Kalman filter |
| keywords[7].id | https://openalex.org/keywords/lidar |
| keywords[7].score | 0.493359237909317 |
| keywords[7].display_name | Lidar |
| keywords[8].id | https://openalex.org/keywords/ransac |
| keywords[8].score | 0.4805227220058441 |
| keywords[8].display_name | RANSAC |
| keywords[9].id | https://openalex.org/keywords/consensus |
| keywords[9].score | 0.4688606858253479 |
| keywords[9].display_name | Consensus |
| keywords[10].id | https://openalex.org/keywords/computer-vision |
| keywords[10].score | 0.44958260655403137 |
| keywords[10].display_name | Computer vision |
| keywords[11].id | https://openalex.org/keywords/extended-kalman-filter |
| keywords[11].score | 0.4487815499305725 |
| keywords[11].display_name | Extended Kalman filter |
| keywords[12].id | https://openalex.org/keywords/trajectory |
| keywords[12].score | 0.4361172914505005 |
| keywords[12].display_name | Trajectory |
| keywords[13].id | https://openalex.org/keywords/remote-sensing |
| keywords[13].score | 0.23257523775100708 |
| keywords[13].display_name | Remote sensing |
| keywords[14].id | https://openalex.org/keywords/geography |
| keywords[14].score | 0.1681033968925476 |
| keywords[14].display_name | Geography |
| keywords[15].id | https://openalex.org/keywords/mobile-robot |
| keywords[15].score | 0.1329619586467743 |
| keywords[15].display_name | Mobile robot |
| keywords[16].id | https://openalex.org/keywords/geodesy |
| keywords[16].score | 0.11963844299316406 |
| keywords[16].display_name | Geodesy |
| language | en |
| locations[0].id | doi:10.5194/isprs-annals-v-2-2021-9-2021 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2737735205 |
| locations[0].source.issn | 2194-9042, 2194-9050, 2196-6346 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2194-9042 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | ISPRS annals of the photogrammetry, remote sensing and spatial information sciences |
| locations[0].source.host_organization | https://openalex.org/P4310313756 |
| locations[0].source.host_organization_name | Copernicus Publications |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310313756 |
| locations[0].source.host_organization_lineage_names | Copernicus Publications |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.isprs-ann-photogramm-remote-sens-spatial-inf-sci.net/V-2-2021/9/2021/isprs-annals-V-2-2021-9-2021.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences |
| locations[0].landing_page_url | https://doi.org/10.5194/isprs-annals-v-2-2021-9-2021 |
| locations[1].id | pmh:oai:doaj.org/article:21fa6210c58e4328b2ba2db5d8a0c4df |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | cc-by-sa |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by-sa |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol V-2-2021, Pp 9-16 (2021) |
| locations[1].landing_page_url | https://doaj.org/article/21fa6210c58e4328b2ba2db5d8a0c4df |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5024011099 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-6761-4638 |
| authorships[0].author.display_name | Jeldrik Axmann |
| authorships[0].countries | DE |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I114112103 |
| authorships[0].affiliations[0].raw_affiliation_string | Institute of Cartography and Geoinformatics, Leibniz University Hannover, Germany |
| authorships[0].institutions[0].id | https://openalex.org/I114112103 |
| authorships[0].institutions[0].ror | https://ror.org/0304hq317 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I114112103 |
| authorships[0].institutions[0].country_code | DE |
| authorships[0].institutions[0].display_name | Leibniz University Hannover |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | J. Axmann |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Institute of Cartography and Geoinformatics, Leibniz University Hannover, Germany |
| authorships[1].author.id | https://openalex.org/A5016827109 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-6459-0682 |
| authorships[1].author.display_name | Claus Brenner |
| authorships[1].countries | DE |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I114112103 |
| authorships[1].affiliations[0].raw_affiliation_string | Institute of Cartography and Geoinformatics, Leibniz University Hannover, Germany |
| authorships[1].institutions[0].id | https://openalex.org/I114112103 |
| authorships[1].institutions[0].ror | https://ror.org/0304hq317 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I114112103 |
| authorships[1].institutions[0].country_code | DE |
| authorships[1].institutions[0].display_name | Leibniz University Hannover |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | C. Brenner |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Institute of Cartography and Geoinformatics, Leibniz University Hannover, Germany |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.isprs-ann-photogramm-remote-sens-spatial-inf-sci.net/V-2-2021/9/2021/isprs-annals-V-2-2021-9-2021.pdf |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | MAXIMUM CONSENSUS LOCALIZATION USING LIDAR SENSORS |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10191 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9998999834060669 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2202 |
| primary_topic.subfield.display_name | Aerospace Engineering |
| primary_topic.display_name | Robotics and Sensor-Based Localization |
| related_works | https://openalex.org/W2125308530, https://openalex.org/W2034836143, https://openalex.org/W1541079531, https://openalex.org/W1981991040, https://openalex.org/W2980755614, https://openalex.org/W2122489470, https://openalex.org/W2467646110, https://openalex.org/W3001939774, https://openalex.org/W2164471481, https://openalex.org/W2583542422 |
| cited_by_count | 4 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2023 |
| counts_by_year[1].cited_by_count | 2 |
| counts_by_year[2].year | 2022 |
| counts_by_year[2].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | doi:10.5194/isprs-annals-v-2-2021-9-2021 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2737735205 |
| best_oa_location.source.issn | 2194-9042, 2194-9050, 2196-6346 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2194-9042 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | ISPRS annals of the photogrammetry, remote sensing and spatial information sciences |
| best_oa_location.source.host_organization | https://openalex.org/P4310313756 |
| best_oa_location.source.host_organization_name | Copernicus Publications |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310313756 |
| best_oa_location.source.host_organization_lineage_names | Copernicus Publications |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.isprs-ann-photogramm-remote-sens-spatial-inf-sci.net/V-2-2021/9/2021/isprs-annals-V-2-2021-9-2021.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences |
| best_oa_location.landing_page_url | https://doi.org/10.5194/isprs-annals-v-2-2021-9-2021 |
| primary_location.id | doi:10.5194/isprs-annals-v-2-2021-9-2021 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2737735205 |
| primary_location.source.issn | 2194-9042, 2194-9050, 2196-6346 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2194-9042 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | ISPRS annals of the photogrammetry, remote sensing and spatial information sciences |
| primary_location.source.host_organization | https://openalex.org/P4310313756 |
| primary_location.source.host_organization_name | Copernicus Publications |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310313756 |
| primary_location.source.host_organization_lineage_names | Copernicus Publications |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.isprs-ann-photogramm-remote-sens-spatial-inf-sci.net/V-2-2021/9/2021/isprs-annals-V-2-2021-9-2021.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences |
| primary_location.landing_page_url | https://doi.org/10.5194/isprs-annals-v-2-2021-9-2021 |
| publication_date | 2021-06-17 |
| publication_year | 2021 |
| referenced_works | https://openalex.org/W2064499898, https://openalex.org/W6662860747, https://openalex.org/W2527622645, https://openalex.org/W2115880351, https://openalex.org/W2066863160, https://openalex.org/W6662509798, https://openalex.org/W2140711847, https://openalex.org/W2593721734, https://openalex.org/W1907417778, https://openalex.org/W6680259527, https://openalex.org/W2085261163, https://openalex.org/W2105934661, https://openalex.org/W2766980341, https://openalex.org/W2133442958, https://openalex.org/W6684643705, https://openalex.org/W2104391975, https://openalex.org/W2097832352, https://openalex.org/W2051755744, https://openalex.org/W2047448918, https://openalex.org/W4290423584, https://openalex.org/W2049535728, https://openalex.org/W2049981393, https://openalex.org/W2139103507, https://openalex.org/W2344049903, https://openalex.org/W2164703480 |
| referenced_works_count | 25 |
| abstract_inverted_index.a | 10, 29, 60, 80, 93, 107, 146, 150, 159 |
| abstract_inverted_index.We | 113, 137 |
| abstract_inverted_index.as | 25 |
| abstract_inverted_index.by | 126, 153 |
| abstract_inverted_index.in | 32, 141, 149 |
| abstract_inverted_index.is | 66 |
| abstract_inverted_index.it | 65 |
| abstract_inverted_index.of | 13, 34, 117, 166 |
| abstract_inverted_index.on | 6, 45, 73, 121 |
| abstract_inverted_index.to | 63, 158 |
| abstract_inverted_index.we | 71, 88 |
| abstract_inverted_index.For | 85 |
| abstract_inverted_index.all | 33 |
| abstract_inverted_index.and | 19, 78, 102, 143, 162 |
| abstract_inverted_index.are | 42 |
| abstract_inverted_index.for | 50, 132, 145 |
| abstract_inverted_index.map | 103 |
| abstract_inverted_index.not | 67 |
| abstract_inverted_index.our | 86 |
| abstract_inverted_index.the | 98, 115, 122, 129, 133, 139, 155, 164, 167 |
| abstract_inverted_index.use | 89 |
| abstract_inverted_index.2975 | 90 |
| abstract_inverted_index.Real | 1 |
| abstract_inverted_index.area | 152 |
| abstract_inverted_index.data | 104 |
| abstract_inverted_index.face | 9 |
| abstract_inverted_index.from | 16, 92 |
| abstract_inverted_index.high | 11, 30, 74 |
| abstract_inverted_index.scan | 100 |
| abstract_inverted_index.show | 163 |
| abstract_inverted_index.such | 24 |
| abstract_inverted_index.this | 69 |
| abstract_inverted_index.LiDAR | 7 |
| abstract_inverted_index.Riegl | 108 |
| abstract_inverted_index.Since | 55 |
| abstract_inverted_index.based | 5, 44 |
| abstract_inverted_index.focus | 72 |
| abstract_inverted_index.least | 47, 56 |
| abstract_inverted_index.often | 43 |
| abstract_inverted_index.scene | 119 |
| abstract_inverted_index.shows | 59 |
| abstract_inverted_index.tasks | 4 |
| abstract_inverted_index.their | 35 |
| abstract_inverted_index.using | 52, 106 |
| abstract_inverted_index.work, | 87 |
| abstract_inverted_index.world | 2 |
| abstract_inverted_index.Kalman | 53 |
| abstract_inverted_index.VLP-16 | 95 |
| abstract_inverted_index.course | 148 |
| abstract_inverted_index.data), | 101 |
| abstract_inverted_index.entire | 134 |
| abstract_inverted_index.epochs | 91 |
| abstract_inverted_index.mobile | 110 |
| abstract_inverted_index.paper, | 70 |
| abstract_inverted_index.result | 125 |
| abstract_inverted_index.search | 135 |
| abstract_inverted_index.space. | 136 |
| abstract_inverted_index.strong | 61 |
| abstract_inverted_index.values | 131 |
| abstract_inverted_index.VMX-250 | 109 |
| abstract_inverted_index.analyze | 138 |
| abstract_inverted_index.arising | 15 |
| abstract_inverted_index.driving | 27 |
| abstract_inverted_index.effects | 116 |
| abstract_inverted_index.heading | 144 |
| abstract_inverted_index.mapping | 111 |
| abstract_inverted_index.maximum | 81, 123, 168 |
| abstract_inverted_index.require | 28 |
| abstract_inverted_index.results | 157 |
| abstract_inverted_index.scanner | 96 |
| abstract_inverted_index.squares | 48, 57 |
| abstract_inverted_index.system. | 112 |
| abstract_inverted_index.usually | 8 |
| abstract_inverted_index.varying | 118 |
| abstract_inverted_index.vehicle | 76, 99 |
| abstract_inverted_index.However, | 22 |
| abstract_inverted_index.Standard | 39 |
| abstract_inverted_index.Velodyne | 94 |
| abstract_inverted_index.changing | 20 |
| abstract_inverted_index.circular | 147 |
| abstract_inverted_index.downtown | 151 |
| abstract_inverted_index.example, | 51 |
| abstract_inverted_index.filters. | 54 |
| abstract_inverted_index.geometry | 120 |
| abstract_inverted_index.obtained | 105 |
| abstract_inverted_index.outliers | 14 |
| abstract_inverted_index.position | 142 |
| abstract_inverted_index.Abstract. | 0 |
| abstract_inverted_index.comparing | 154 |
| abstract_inverted_index.computing | 128 |
| abstract_inverted_index.consensus | 82, 124, 130, 169 |
| abstract_inverted_index.erroneous | 17 |
| abstract_inverted_index.including | 37 |
| abstract_inverted_index.integrity | 31, 75 |
| abstract_inverted_index.outliers, | 64 |
| abstract_inverted_index.reference | 160 |
| abstract_inverted_index.robust.In | 68 |
| abstract_inverted_index.strategy. | 84 |
| abstract_inverted_index.approaches | 41 |
| abstract_inverted_index.autonomous | 26 |
| abstract_inverted_index.deviations | 140 |
| abstract_inverted_index.estimation | 156 |
| abstract_inverted_index.proportion | 12 |
| abstract_inverted_index.robustness | 165 |
| abstract_inverted_index.(recursive) | 46 |
| abstract_inverted_index.components, | 36 |
| abstract_inverted_index.estimation, | 49 |
| abstract_inverted_index.investigate | 79, 114 |
| abstract_inverted_index.trajectory, | 161 |
| abstract_inverted_index.applications | 23 |
| abstract_inverted_index.exhaustively | 127 |
| abstract_inverted_index.localization | 3, 40, 77, 83 |
| abstract_inverted_index.measurements | 18 |
| abstract_inverted_index.minimization | 58 |
| abstract_inverted_index.(representing | 97 |
| abstract_inverted_index.environments. | 21 |
| abstract_inverted_index.localization. | 38, 170 |
| abstract_inverted_index.susceptibility | 62 |
| cited_by_percentile_year.max | 96 |
| cited_by_percentile_year.min | 89 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 2 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/11 |
| sustainable_development_goals[0].score | 0.7300000190734863 |
| sustainable_development_goals[0].display_name | Sustainable cities and communities |
| citation_normalized_percentile.value | 0.8233304 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |