$MC^2RAM$: Markov Chain Monte Carlo Sampling in SRAM for Fast Bayesian Inference Article Swipe
YOU?
·
· 2020
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2003.02629
This work discusses the implementation of Markov Chain Monte Carlo (MCMC) sampling from an arbitrary Gaussian mixture model (GMM) within SRAM. We show a novel architecture of SRAM by embedding it with random number generators (RNGs), digital-to-analog converters (DACs), and analog-to-digital converters (ADCs) so that SRAM arrays can be used for high performance Metropolis-Hastings (MH) algorithm-based MCMC sampling. Most of the expensive computations are performed within the SRAM and can be parallelized for high speed sampling. Our iterative compute flow minimizes data movement during sampling. We characterize power-performance trade-off of our design by simulating on 45 nm CMOS technology. For a two-dimensional, two mixture GMM, the implementation consumes ~ 91 micro-Watts power per sampling iteration and produces 500 samples in 2000 clock cycles on an average at 1 GHz clock frequency. Our study highlights interesting insights on how low-level hardware non-idealities can affect high-level sampling characteristics, and recommends ways to optimally operate SRAM within area/power constraints for high performance sampling.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2003.02629
- https://arxiv.org/pdf/2003.02629
- OA Status
- green
- Cited By
- 5
- References
- 14
- Related Works
- 20
- OpenAlex ID
- https://openalex.org/W3010460094
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3010460094Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2003.02629Digital Object Identifier
- Title
-
$MC^2RAM$: Markov Chain Monte Carlo Sampling in SRAM for Fast Bayesian InferenceWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2020Year of publication
- Publication date
-
2020-02-28Full publication date if available
- Authors
-
Priyesh Shukla, Ahish Shylendra, Theja Tulabandhula, Amit Ranjan TrivediList of authors in order
- Landing page
-
https://arxiv.org/abs/2003.02629Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2003.02629Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2003.02629Direct OA link when available
- Concepts
-
Markov chain Monte Carlo, Static random-access memory, Sampling (signal processing), Computer science, Monte Carlo method, Algorithm, CMOS, Importance sampling, Slice sampling, Electronic engineering, Bayesian probability, Mathematics, Engineering, Computer hardware, Statistics, Artificial intelligence, Filter (signal processing), Computer visionTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
5Total citation count in OpenAlex
- Citations by year (recent)
-
2023: 1, 2022: 1, 2021: 2, 2020: 1Per-year citation counts (last 5 years)
- References (count)
-
14Number of works referenced by this work
- Related works (count)
-
20Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3010460094 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2003.02629 |
| ids.doi | https://doi.org/10.48550/arxiv.2003.02629 |
| ids.mag | 3010460094 |
| ids.openalex | https://openalex.org/W3010460094 |
| fwci | |
| type | preprint |
| title | $MC^2RAM$: Markov Chain Monte Carlo Sampling in SRAM for Fast Bayesian Inference |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T12814 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9993000030517578 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Gaussian Processes and Bayesian Inference |
| topics[1].id | https://openalex.org/T11901 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9932000041007996 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Bayesian Methods and Mixture Models |
| topics[2].id | https://openalex.org/T10711 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9884999990463257 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Target Tracking and Data Fusion in Sensor Networks |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C111350023 |
| concepts[0].level | 3 |
| concepts[0].score | 0.8122810125350952 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1191869 |
| concepts[0].display_name | Markov chain Monte Carlo |
| concepts[1].id | https://openalex.org/C68043766 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7491947412490845 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q267416 |
| concepts[1].display_name | Static random-access memory |
| concepts[2].id | https://openalex.org/C140779682 |
| concepts[2].level | 3 |
| concepts[2].score | 0.6452640295028687 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q210868 |
| concepts[2].display_name | Sampling (signal processing) |
| concepts[3].id | https://openalex.org/C41008148 |
| concepts[3].level | 0 |
| concepts[3].score | 0.5954252481460571 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[3].display_name | Computer science |
| concepts[4].id | https://openalex.org/C19499675 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5481786727905273 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q232207 |
| concepts[4].display_name | Monte Carlo method |
| concepts[5].id | https://openalex.org/C11413529 |
| concepts[5].level | 1 |
| concepts[5].score | 0.5040525197982788 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[5].display_name | Algorithm |
| concepts[6].id | https://openalex.org/C46362747 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4979414939880371 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q173431 |
| concepts[6].display_name | CMOS |
| concepts[7].id | https://openalex.org/C52740198 |
| concepts[7].level | 3 |
| concepts[7].score | 0.4847833514213562 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q1539564 |
| concepts[7].display_name | Importance sampling |
| concepts[8].id | https://openalex.org/C170593435 |
| concepts[8].level | 4 |
| concepts[8].score | 0.4833676218986511 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q4128565 |
| concepts[8].display_name | Slice sampling |
| concepts[9].id | https://openalex.org/C24326235 |
| concepts[9].level | 1 |
| concepts[9].score | 0.4206976890563965 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q126095 |
| concepts[9].display_name | Electronic engineering |
| concepts[10].id | https://openalex.org/C107673813 |
| concepts[10].level | 2 |
| concepts[10].score | 0.3137211203575134 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q812534 |
| concepts[10].display_name | Bayesian probability |
| concepts[11].id | https://openalex.org/C33923547 |
| concepts[11].level | 0 |
| concepts[11].score | 0.21162360906600952 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[11].display_name | Mathematics |
| concepts[12].id | https://openalex.org/C127413603 |
| concepts[12].level | 0 |
| concepts[12].score | 0.1806558072566986 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[12].display_name | Engineering |
| concepts[13].id | https://openalex.org/C9390403 |
| concepts[13].level | 1 |
| concepts[13].score | 0.17536881566047668 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q3966 |
| concepts[13].display_name | Computer hardware |
| concepts[14].id | https://openalex.org/C105795698 |
| concepts[14].level | 1 |
| concepts[14].score | 0.16280609369277954 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[14].display_name | Statistics |
| concepts[15].id | https://openalex.org/C154945302 |
| concepts[15].level | 1 |
| concepts[15].score | 0.14790701866149902 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[15].display_name | Artificial intelligence |
| concepts[16].id | https://openalex.org/C106131492 |
| concepts[16].level | 2 |
| concepts[16].score | 0.09091633558273315 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q3072260 |
| concepts[16].display_name | Filter (signal processing) |
| concepts[17].id | https://openalex.org/C31972630 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[17].display_name | Computer vision |
| keywords[0].id | https://openalex.org/keywords/markov-chain-monte-carlo |
| keywords[0].score | 0.8122810125350952 |
| keywords[0].display_name | Markov chain Monte Carlo |
| keywords[1].id | https://openalex.org/keywords/static-random-access-memory |
| keywords[1].score | 0.7491947412490845 |
| keywords[1].display_name | Static random-access memory |
| keywords[2].id | https://openalex.org/keywords/sampling |
| keywords[2].score | 0.6452640295028687 |
| keywords[2].display_name | Sampling (signal processing) |
| keywords[3].id | https://openalex.org/keywords/computer-science |
| keywords[3].score | 0.5954252481460571 |
| keywords[3].display_name | Computer science |
| keywords[4].id | https://openalex.org/keywords/monte-carlo-method |
| keywords[4].score | 0.5481786727905273 |
| keywords[4].display_name | Monte Carlo method |
| keywords[5].id | https://openalex.org/keywords/algorithm |
| keywords[5].score | 0.5040525197982788 |
| keywords[5].display_name | Algorithm |
| keywords[6].id | https://openalex.org/keywords/cmos |
| keywords[6].score | 0.4979414939880371 |
| keywords[6].display_name | CMOS |
| keywords[7].id | https://openalex.org/keywords/importance-sampling |
| keywords[7].score | 0.4847833514213562 |
| keywords[7].display_name | Importance sampling |
| keywords[8].id | https://openalex.org/keywords/slice-sampling |
| keywords[8].score | 0.4833676218986511 |
| keywords[8].display_name | Slice sampling |
| keywords[9].id | https://openalex.org/keywords/electronic-engineering |
| keywords[9].score | 0.4206976890563965 |
| keywords[9].display_name | Electronic engineering |
| keywords[10].id | https://openalex.org/keywords/bayesian-probability |
| keywords[10].score | 0.3137211203575134 |
| keywords[10].display_name | Bayesian probability |
| keywords[11].id | https://openalex.org/keywords/mathematics |
| keywords[11].score | 0.21162360906600952 |
| keywords[11].display_name | Mathematics |
| keywords[12].id | https://openalex.org/keywords/engineering |
| keywords[12].score | 0.1806558072566986 |
| keywords[12].display_name | Engineering |
| keywords[13].id | https://openalex.org/keywords/computer-hardware |
| keywords[13].score | 0.17536881566047668 |
| keywords[13].display_name | Computer hardware |
| keywords[14].id | https://openalex.org/keywords/statistics |
| keywords[14].score | 0.16280609369277954 |
| keywords[14].display_name | Statistics |
| keywords[15].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[15].score | 0.14790701866149902 |
| keywords[15].display_name | Artificial intelligence |
| keywords[16].id | https://openalex.org/keywords/filter |
| keywords[16].score | 0.09091633558273315 |
| keywords[16].display_name | Filter (signal processing) |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2003.02629 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2003.02629 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2003.02629 |
| locations[1].id | mag:3010460094 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | arXiv (Cornell University) |
| locations[1].landing_page_url | https://arxiv.org/pdf/2003.02629.pdf |
| locations[2].id | doi:10.48550/arxiv.2003.02629 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S4306400194 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | True |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | arXiv (Cornell University) |
| locations[2].source.host_organization | https://openalex.org/I205783295 |
| locations[2].source.host_organization_name | Cornell University |
| locations[2].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | |
| locations[2].raw_type | article |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | |
| locations[2].raw_source_name | |
| locations[2].landing_page_url | https://doi.org/10.48550/arxiv.2003.02629 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5067601336 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-9868-8944 |
| authorships[0].author.display_name | Priyesh Shukla |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Priyesh Shukla |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5013872413 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-2388-0453 |
| authorships[1].author.display_name | Ahish Shylendra |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Ahish Shylendra |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5062751346 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-9111-7519 |
| authorships[2].author.display_name | Theja Tulabandhula |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Theja Tulabandhula |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5028132107 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-5436-7922 |
| authorships[3].author.display_name | Amit Ranjan Trivedi |
| authorships[3].countries | US |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I39422238 |
| authorships[3].affiliations[0].raw_affiliation_string | University of Illinois at #TAB#Chicago |
| authorships[3].institutions[0].id | https://openalex.org/I39422238 |
| authorships[3].institutions[0].ror | https://ror.org/02mpq6x41 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I39422238 |
| authorships[3].institutions[0].country_code | US |
| authorships[3].institutions[0].display_name | University of Illinois Chicago |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Amit Ranjan Trivedi |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | University of Illinois at #TAB#Chicago |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2003.02629 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | $MC^2RAM$: Markov Chain Monte Carlo Sampling in SRAM for Fast Bayesian Inference |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T12814 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9993000030517578 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Gaussian Processes and Bayesian Inference |
| related_works | https://openalex.org/W2169189905, https://openalex.org/W3036290379, https://openalex.org/W1966959553, https://openalex.org/W2519965010, https://openalex.org/W1909809860, https://openalex.org/W3185178828, https://openalex.org/W3092014264, https://openalex.org/W2999712069, https://openalex.org/W2148806597, https://openalex.org/W2137128500, https://openalex.org/W2131190781, https://openalex.org/W2951455577, https://openalex.org/W1683546237, https://openalex.org/W2170702001, https://openalex.org/W3013336438, https://openalex.org/W2029602649, https://openalex.org/W2147303826, https://openalex.org/W1985194483, https://openalex.org/W2028612976, https://openalex.org/W1803471516 |
| cited_by_count | 5 |
| counts_by_year[0].year | 2023 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2022 |
| counts_by_year[1].cited_by_count | 1 |
| counts_by_year[2].year | 2021 |
| counts_by_year[2].cited_by_count | 2 |
| counts_by_year[3].year | 2020 |
| counts_by_year[3].cited_by_count | 1 |
| locations_count | 3 |
| best_oa_location.id | pmh:oai:arXiv.org:2003.02629 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2003.02629 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2003.02629 |
| primary_location.id | pmh:oai:arXiv.org:2003.02629 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2003.02629 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2003.02629 |
| publication_date | 2020-02-28 |
| publication_year | 2020 |
| referenced_works | https://openalex.org/W1999085092, https://openalex.org/W2785369415, https://openalex.org/W3123298421, https://openalex.org/W2108207895, https://openalex.org/W2010205010, https://openalex.org/W2156829028, https://openalex.org/W2604319603, https://openalex.org/W2135194391, https://openalex.org/W2951266961, https://openalex.org/W2928320209, https://openalex.org/W2033178790, https://openalex.org/W2080972498, https://openalex.org/W2591601611, https://openalex.org/W1567512734 |
| referenced_works_count | 14 |
| abstract_inverted_index.1 | 127 |
| abstract_inverted_index.a | 23, 100 |
| abstract_inverted_index.~ | 108 |
| abstract_inverted_index.45 | 95 |
| abstract_inverted_index.91 | 109 |
| abstract_inverted_index.We | 21, 85 |
| abstract_inverted_index.an | 13, 124 |
| abstract_inverted_index.at | 126 |
| abstract_inverted_index.be | 48, 70 |
| abstract_inverted_index.by | 28, 92 |
| abstract_inverted_index.in | 119 |
| abstract_inverted_index.it | 30 |
| abstract_inverted_index.nm | 96 |
| abstract_inverted_index.of | 5, 26, 59, 89 |
| abstract_inverted_index.on | 94, 123, 136 |
| abstract_inverted_index.so | 43 |
| abstract_inverted_index.to | 149 |
| abstract_inverted_index.500 | 117 |
| abstract_inverted_index.For | 99 |
| abstract_inverted_index.GHz | 128 |
| abstract_inverted_index.Our | 76, 131 |
| abstract_inverted_index.and | 39, 68, 115, 146 |
| abstract_inverted_index.are | 63 |
| abstract_inverted_index.can | 47, 69, 141 |
| abstract_inverted_index.for | 50, 72, 156 |
| abstract_inverted_index.how | 137 |
| abstract_inverted_index.our | 90 |
| abstract_inverted_index.per | 112 |
| abstract_inverted_index.the | 3, 60, 66, 105 |
| abstract_inverted_index.two | 102 |
| abstract_inverted_index.(MH) | 54 |
| abstract_inverted_index.2000 | 120 |
| abstract_inverted_index.CMOS | 97 |
| abstract_inverted_index.GMM, | 104 |
| abstract_inverted_index.MCMC | 56 |
| abstract_inverted_index.Most | 58 |
| abstract_inverted_index.SRAM | 27, 45, 67, 152 |
| abstract_inverted_index.This | 0 |
| abstract_inverted_index.data | 81 |
| abstract_inverted_index.flow | 79 |
| abstract_inverted_index.from | 12 |
| abstract_inverted_index.high | 51, 73, 157 |
| abstract_inverted_index.show | 22 |
| abstract_inverted_index.that | 44 |
| abstract_inverted_index.used | 49 |
| abstract_inverted_index.ways | 148 |
| abstract_inverted_index.with | 31 |
| abstract_inverted_index.work | 1 |
| abstract_inverted_index.(GMM) | 18 |
| abstract_inverted_index.Carlo | 9 |
| abstract_inverted_index.Chain | 7 |
| abstract_inverted_index.Monte | 8 |
| abstract_inverted_index.SRAM. | 20 |
| abstract_inverted_index.clock | 121, 129 |
| abstract_inverted_index.model | 17 |
| abstract_inverted_index.novel | 24 |
| abstract_inverted_index.power | 111 |
| abstract_inverted_index.speed | 74 |
| abstract_inverted_index.study | 132 |
| abstract_inverted_index.(ADCs) | 42 |
| abstract_inverted_index.(MCMC) | 10 |
| abstract_inverted_index.Markov | 6 |
| abstract_inverted_index.affect | 142 |
| abstract_inverted_index.arrays | 46 |
| abstract_inverted_index.cycles | 122 |
| abstract_inverted_index.design | 91 |
| abstract_inverted_index.during | 83 |
| abstract_inverted_index.number | 33 |
| abstract_inverted_index.random | 32 |
| abstract_inverted_index.within | 19, 65, 153 |
| abstract_inverted_index.(DACs), | 38 |
| abstract_inverted_index.(RNGs), | 35 |
| abstract_inverted_index.average | 125 |
| abstract_inverted_index.compute | 78 |
| abstract_inverted_index.mixture | 16, 103 |
| abstract_inverted_index.operate | 151 |
| abstract_inverted_index.samples | 118 |
| abstract_inverted_index.Gaussian | 15 |
| abstract_inverted_index.consumes | 107 |
| abstract_inverted_index.hardware | 139 |
| abstract_inverted_index.insights | 135 |
| abstract_inverted_index.movement | 82 |
| abstract_inverted_index.produces | 116 |
| abstract_inverted_index.sampling | 11, 113, 144 |
| abstract_inverted_index.arbitrary | 14 |
| abstract_inverted_index.discusses | 2 |
| abstract_inverted_index.embedding | 29 |
| abstract_inverted_index.expensive | 61 |
| abstract_inverted_index.iteration | 114 |
| abstract_inverted_index.iterative | 77 |
| abstract_inverted_index.low-level | 138 |
| abstract_inverted_index.minimizes | 80 |
| abstract_inverted_index.optimally | 150 |
| abstract_inverted_index.performed | 64 |
| abstract_inverted_index.sampling. | 57, 75, 84, 159 |
| abstract_inverted_index.trade-off | 88 |
| abstract_inverted_index.area/power | 154 |
| abstract_inverted_index.converters | 37, 41 |
| abstract_inverted_index.frequency. | 130 |
| abstract_inverted_index.generators | 34 |
| abstract_inverted_index.high-level | 143 |
| abstract_inverted_index.highlights | 133 |
| abstract_inverted_index.recommends | 147 |
| abstract_inverted_index.simulating | 93 |
| abstract_inverted_index.constraints | 155 |
| abstract_inverted_index.interesting | 134 |
| abstract_inverted_index.micro-Watts | 110 |
| abstract_inverted_index.performance | 52, 158 |
| abstract_inverted_index.technology. | 98 |
| abstract_inverted_index.architecture | 25 |
| abstract_inverted_index.characterize | 86 |
| abstract_inverted_index.computations | 62 |
| abstract_inverted_index.parallelized | 71 |
| abstract_inverted_index.implementation | 4, 106 |
| abstract_inverted_index.non-idealities | 140 |
| abstract_inverted_index.algorithm-based | 55 |
| abstract_inverted_index.characteristics, | 145 |
| abstract_inverted_index.two-dimensional, | 101 |
| abstract_inverted_index.analog-to-digital | 40 |
| abstract_inverted_index.digital-to-analog | 36 |
| abstract_inverted_index.power-performance | 87 |
| abstract_inverted_index.Metropolis-Hastings | 53 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile |