MCPSHA: A New Tool for Probabilistic Seismic Hazard Analysis Based on Monte Carlo Simulation Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.3390/app14031079
The utilization of the Monte Carlo method in conjunction with probabilistic seismic hazard analysis (PSHA) constitutes a compelling avenue for exploration. This approach presents itself as an efficient and adaptable alternative to conventional PSHA, particularly when confronted with intricate factors such as parameter uncertainties and diverse earthquake source models. Leveraging the Monte Carlo method and drawing from the widely adopted Cornell-type seismicity model in engineering seismology and disaster mitigation, as well as a seismicity model capturing temporal, spatial, and magnitude inhomogeneity, we have derived a formula for the probability of earthquake intensity occurrence and the mean rate of intensity occurrence over a specified time period. This effort has culminated in the development of a MATLAB-based program named MCPSHA. To assess the model’s efficacy, we selected Baoji City, Shaanxi Province, China, as our research site. Our investigation delves into the disparity between occurrence probability and extreme probability (a surrogate commonly employed for occurrence probability) in the Baoji region over the next 50 years. The findings reveal that the Western region of Baoji exhibits a heightened hazard level, as depicted in the maps, which illustrate a 10% probability of exceedance within a 50-year timeframe. The probability of earthquake occurrence under various intensities (VI, VII, and VIII) over 50 years follows a declining trend from west to east. Furthermore, the likelihood of seismic intensity exceeding VI, VII, and VIII indicates the lowest exceeding probability in the northeast and the highest in the northwest. Notably, for intensities VI-VII, the difference between occurrence probability and extreme probability approaches twice, gradually diminishing with increasing intensity. This study underscores the MCPSHA model’s efficacy in providing robust technical support for mitigating earthquake risk and enhancing the precision of earthquake insurance premium rate calculations.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3390/app14031079
- https://www.mdpi.com/2076-3417/14/3/1079/pdf?version=1706282483
- OA Status
- gold
- References
- 40
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4391263523
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4391263523Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/app14031079Digital Object Identifier
- Title
-
MCPSHA: A New Tool for Probabilistic Seismic Hazard Analysis Based on Monte Carlo SimulationWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-01-26Full publication date if available
- Authors
-
Xiaoyi Shao, Xiaoqing Wang, Chong Xu, Siyuan MaList of authors in order
- Landing page
-
https://doi.org/10.3390/app14031079Publisher landing page
- PDF URL
-
https://www.mdpi.com/2076-3417/14/3/1079/pdf?version=1706282483Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.mdpi.com/2076-3417/14/3/1079/pdf?version=1706282483Direct OA link when available
- Concepts
-
Monte Carlo method, Computer science, Geology, Statistics, MathematicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
40Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4391263523 |
|---|---|
| doi | https://doi.org/10.3390/app14031079 |
| ids.doi | https://doi.org/10.3390/app14031079 |
| ids.openalex | https://openalex.org/W4391263523 |
| fwci | 0.0 |
| type | article |
| title | MCPSHA: A New Tool for Probabilistic Seismic Hazard Analysis Based on Monte Carlo Simulation |
| biblio.issue | 3 |
| biblio.volume | 14 |
| biblio.last_page | 1079 |
| biblio.first_page | 1079 |
| topics[0].id | https://openalex.org/T10110 |
| topics[0].field.id | https://openalex.org/fields/19 |
| topics[0].field.display_name | Earth and Planetary Sciences |
| topics[0].score | 0.9901000261306763 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1908 |
| topics[0].subfield.display_name | Geophysics |
| topics[0].display_name | earthquake and tectonic studies |
| topics[1].id | https://openalex.org/T10160 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9771999716758728 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2205 |
| topics[1].subfield.display_name | Civil and Structural Engineering |
| topics[1].display_name | Seismic Performance and Analysis |
| topics[2].id | https://openalex.org/T13018 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9745000004768372 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Seismology and Earthquake Studies |
| is_xpac | False |
| apc_list.value | 2300 |
| apc_list.currency | CHF |
| apc_list.value_usd | 2490 |
| apc_paid.value | 2300 |
| apc_paid.currency | CHF |
| apc_paid.value_usd | 2490 |
| concepts[0].id | https://openalex.org/C19499675 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6078736782073975 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q232207 |
| concepts[0].display_name | Monte Carlo method |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.43081605434417725 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C127313418 |
| concepts[2].level | 0 |
| concepts[2].score | 0.3396913409233093 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q1069 |
| concepts[2].display_name | Geology |
| concepts[3].id | https://openalex.org/C105795698 |
| concepts[3].level | 1 |
| concepts[3].score | 0.16890794038772583 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[3].display_name | Statistics |
| concepts[4].id | https://openalex.org/C33923547 |
| concepts[4].level | 0 |
| concepts[4].score | 0.1400320827960968 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[4].display_name | Mathematics |
| keywords[0].id | https://openalex.org/keywords/monte-carlo-method |
| keywords[0].score | 0.6078736782073975 |
| keywords[0].display_name | Monte Carlo method |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.43081605434417725 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/geology |
| keywords[2].score | 0.3396913409233093 |
| keywords[2].display_name | Geology |
| keywords[3].id | https://openalex.org/keywords/statistics |
| keywords[3].score | 0.16890794038772583 |
| keywords[3].display_name | Statistics |
| keywords[4].id | https://openalex.org/keywords/mathematics |
| keywords[4].score | 0.1400320827960968 |
| keywords[4].display_name | Mathematics |
| language | en |
| locations[0].id | doi:10.3390/app14031079 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210205812 |
| locations[0].source.issn | 2076-3417 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2076-3417 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Applied Sciences |
| locations[0].source.host_organization | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.mdpi.com/2076-3417/14/3/1079/pdf?version=1706282483 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Applied Sciences |
| locations[0].landing_page_url | https://doi.org/10.3390/app14031079 |
| locations[1].id | pmh:oai:doaj.org/article:128b6982dc254d88aaa94db40276be0e |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Applied Sciences, Vol 14, Iss 3, p 1079 (2024) |
| locations[1].landing_page_url | https://doaj.org/article/128b6982dc254d88aaa94db40276be0e |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5101746692 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-0333-1713 |
| authorships[0].author.display_name | Xiaoyi Shao |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I4210098880 |
| authorships[0].affiliations[0].raw_affiliation_string | National Institute of Natural Hazards, Ministry of Emergency Management of China, Beijing 100085, China |
| authorships[0].affiliations[1].institution_ids | https://openalex.org/I90149893 |
| authorships[0].affiliations[1].raw_affiliation_string | Institute of Earthquake Forecasting China Earthquake Administration, Beijing 100036, China |
| authorships[0].affiliations[2].raw_affiliation_string | Key Laboratory of Compound and Chained Natural Hazards Dynamics, Ministry of Emergency Management of China, Beijing 100085, China |
| authorships[0].institutions[0].id | https://openalex.org/I90149893 |
| authorships[0].institutions[0].ror | https://ror.org/045sza929 |
| authorships[0].institutions[0].type | facility |
| authorships[0].institutions[0].lineage | https://openalex.org/I90149893 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | China Earthquake Administration |
| authorships[0].institutions[1].id | https://openalex.org/I4210098880 |
| authorships[0].institutions[1].ror | https://ror.org/00xdrzy17 |
| authorships[0].institutions[1].type | healthcare |
| authorships[0].institutions[1].lineage | https://openalex.org/I4210098880 |
| authorships[0].institutions[1].country_code | CN |
| authorships[0].institutions[1].display_name | National Institute of Hospital Administration |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Xiaoyi Shao |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Institute of Earthquake Forecasting China Earthquake Administration, Beijing 100036, China, Key Laboratory of Compound and Chained Natural Hazards Dynamics, Ministry of Emergency Management of China, Beijing 100085, China, National Institute of Natural Hazards, Ministry of Emergency Management of China, Beijing 100085, China |
| authorships[1].author.id | https://openalex.org/A5039772620 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-6660-8030 |
| authorships[1].author.display_name | Xiaoqing Wang |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I90149893 |
| authorships[1].affiliations[0].raw_affiliation_string | Institute of Earthquake Forecasting China Earthquake Administration, Beijing 100036, China |
| authorships[1].institutions[0].id | https://openalex.org/I90149893 |
| authorships[1].institutions[0].ror | https://ror.org/045sza929 |
| authorships[1].institutions[0].type | facility |
| authorships[1].institutions[0].lineage | https://openalex.org/I90149893 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | China Earthquake Administration |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Xiaoqing Wang |
| authorships[1].is_corresponding | True |
| authorships[1].raw_affiliation_strings | Institute of Earthquake Forecasting China Earthquake Administration, Beijing 100036, China |
| authorships[2].author.id | https://openalex.org/A5077706881 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-3956-4925 |
| authorships[2].author.display_name | Chong Xu |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].raw_affiliation_string | Key Laboratory of Landslide Risk Early-Warning and Control, Ministry of Emergency Management of China, Chengdu 610059, China |
| authorships[2].affiliations[1].institution_ids | https://openalex.org/I4210098880 |
| authorships[2].affiliations[1].raw_affiliation_string | National Institute of Natural Hazards, Ministry of Emergency Management of China, Beijing 100085, China |
| authorships[2].affiliations[2].raw_affiliation_string | Key Laboratory of Compound and Chained Natural Hazards Dynamics, Ministry of Emergency Management of China, Beijing 100085, China |
| authorships[2].institutions[0].id | https://openalex.org/I4210098880 |
| authorships[2].institutions[0].ror | https://ror.org/00xdrzy17 |
| authorships[2].institutions[0].type | healthcare |
| authorships[2].institutions[0].lineage | https://openalex.org/I4210098880 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | National Institute of Hospital Administration |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Chong Xu |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Key Laboratory of Compound and Chained Natural Hazards Dynamics, Ministry of Emergency Management of China, Beijing 100085, China, Key Laboratory of Landslide Risk Early-Warning and Control, Ministry of Emergency Management of China, Chengdu 610059, China, National Institute of Natural Hazards, Ministry of Emergency Management of China, Beijing 100085, China |
| authorships[3].author.id | https://openalex.org/A5032794241 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-9207-1062 |
| authorships[3].author.display_name | Siyuan Ma |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I90149893 |
| authorships[3].affiliations[0].raw_affiliation_string | Institute of Earthquake Geology, China Earthquake Administration, Beijing 100036, China |
| authorships[3].institutions[0].id | https://openalex.org/I90149893 |
| authorships[3].institutions[0].ror | https://ror.org/045sza929 |
| authorships[3].institutions[0].type | facility |
| authorships[3].institutions[0].lineage | https://openalex.org/I90149893 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | China Earthquake Administration |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Siyuan Ma |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Institute of Earthquake Geology, China Earthquake Administration, Beijing 100036, China |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.mdpi.com/2076-3417/14/3/1079/pdf?version=1706282483 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | MCPSHA: A New Tool for Probabilistic Seismic Hazard Analysis Based on Monte Carlo Simulation |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10110 |
| primary_topic.field.id | https://openalex.org/fields/19 |
| primary_topic.field.display_name | Earth and Planetary Sciences |
| primary_topic.score | 0.9901000261306763 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1908 |
| primary_topic.subfield.display_name | Geophysics |
| primary_topic.display_name | earthquake and tectonic studies |
| related_works | https://openalex.org/W4391375266, https://openalex.org/W2899084033, https://openalex.org/W2748952813, https://openalex.org/W2324615561, https://openalex.org/W2086120259, https://openalex.org/W2390279801, https://openalex.org/W2245170124, https://openalex.org/W2076393078, https://openalex.org/W4391913857, https://openalex.org/W2358668433 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | doi:10.3390/app14031079 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210205812 |
| best_oa_location.source.issn | 2076-3417 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2076-3417 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Applied Sciences |
| best_oa_location.source.host_organization | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.mdpi.com/2076-3417/14/3/1079/pdf?version=1706282483 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Applied Sciences |
| best_oa_location.landing_page_url | https://doi.org/10.3390/app14031079 |
| primary_location.id | doi:10.3390/app14031079 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210205812 |
| primary_location.source.issn | 2076-3417 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2076-3417 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Applied Sciences |
| primary_location.source.host_organization | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.mdpi.com/2076-3417/14/3/1079/pdf?version=1706282483 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Applied Sciences |
| primary_location.landing_page_url | https://doi.org/10.3390/app14031079 |
| publication_date | 2024-01-26 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W3186434374, https://openalex.org/W2080874469, https://openalex.org/W3047759742, https://openalex.org/W2096154525, https://openalex.org/W2899290252, https://openalex.org/W3035486359, https://openalex.org/W3003802494, https://openalex.org/W2049650753, https://openalex.org/W3107696457, https://openalex.org/W2057198359, https://openalex.org/W3118979638, https://openalex.org/W2906770798, https://openalex.org/W3088886016, https://openalex.org/W1963625619, https://openalex.org/W2286534042, https://openalex.org/W2127014735, https://openalex.org/W6635174824, https://openalex.org/W2175987514, https://openalex.org/W2035471989, https://openalex.org/W108762621, https://openalex.org/W2011192020, https://openalex.org/W2069966806, https://openalex.org/W1963684701, https://openalex.org/W2605310885, https://openalex.org/W2000114370, https://openalex.org/W2000933466, https://openalex.org/W2999270601, https://openalex.org/W2593250699, https://openalex.org/W6678444191, https://openalex.org/W2151084831, https://openalex.org/W2095595785, https://openalex.org/W6683502066, https://openalex.org/W2117686912, https://openalex.org/W2340649910, https://openalex.org/W2370944962, https://openalex.org/W2387823538, https://openalex.org/W2563128718, https://openalex.org/W2336134266, https://openalex.org/W2125497200, https://openalex.org/W1584468662 |
| referenced_works_count | 40 |
| abstract_inverted_index.a | 16, 72, 84, 101, 113, 172, 183, 189, 208 |
| abstract_inverted_index.(a | 146 |
| abstract_inverted_index.50 | 160, 205 |
| abstract_inverted_index.To | 118 |
| abstract_inverted_index.an | 26 |
| abstract_inverted_index.as | 25, 41, 69, 71, 130, 176 |
| abstract_inverted_index.in | 7, 63, 109, 153, 178, 231, 237, 266 |
| abstract_inverted_index.of | 2, 89, 97, 112, 169, 186, 194, 218, 279 |
| abstract_inverted_index.to | 31, 213 |
| abstract_inverted_index.we | 81, 123 |
| abstract_inverted_index.10% | 184 |
| abstract_inverted_index.Our | 134 |
| abstract_inverted_index.The | 0, 162, 192 |
| abstract_inverted_index.VI, | 222 |
| abstract_inverted_index.and | 28, 44, 54, 66, 78, 93, 143, 202, 224, 234, 249, 275 |
| abstract_inverted_index.for | 19, 86, 150, 241, 271 |
| abstract_inverted_index.has | 107 |
| abstract_inverted_index.our | 131 |
| abstract_inverted_index.the | 3, 50, 57, 87, 94, 110, 120, 138, 154, 158, 166, 179, 216, 227, 232, 235, 238, 244, 262, 277 |
| abstract_inverted_index.(VI, | 200 |
| abstract_inverted_index.This | 21, 105, 259 |
| abstract_inverted_index.VII, | 201, 223 |
| abstract_inverted_index.VIII | 225 |
| abstract_inverted_index.from | 56, 211 |
| abstract_inverted_index.have | 82 |
| abstract_inverted_index.into | 137 |
| abstract_inverted_index.mean | 95 |
| abstract_inverted_index.next | 159 |
| abstract_inverted_index.over | 100, 157, 204 |
| abstract_inverted_index.rate | 96, 283 |
| abstract_inverted_index.risk | 274 |
| abstract_inverted_index.such | 40 |
| abstract_inverted_index.that | 165 |
| abstract_inverted_index.time | 103 |
| abstract_inverted_index.well | 70 |
| abstract_inverted_index.west | 212 |
| abstract_inverted_index.when | 35 |
| abstract_inverted_index.with | 9, 37, 256 |
| abstract_inverted_index.Baoji | 125, 155, 170 |
| abstract_inverted_index.Carlo | 5, 52 |
| abstract_inverted_index.City, | 126 |
| abstract_inverted_index.Monte | 4, 51 |
| abstract_inverted_index.PSHA, | 33 |
| abstract_inverted_index.VIII) | 203 |
| abstract_inverted_index.east. | 214 |
| abstract_inverted_index.maps, | 180 |
| abstract_inverted_index.model | 62, 74 |
| abstract_inverted_index.named | 116 |
| abstract_inverted_index.site. | 133 |
| abstract_inverted_index.study | 260 |
| abstract_inverted_index.trend | 210 |
| abstract_inverted_index.under | 197 |
| abstract_inverted_index.which | 181 |
| abstract_inverted_index.years | 206 |
| abstract_inverted_index.(PSHA) | 14 |
| abstract_inverted_index.China, | 129 |
| abstract_inverted_index.MCPSHA | 263 |
| abstract_inverted_index.assess | 119 |
| abstract_inverted_index.avenue | 18 |
| abstract_inverted_index.delves | 136 |
| abstract_inverted_index.effort | 106 |
| abstract_inverted_index.hazard | 12, 174 |
| abstract_inverted_index.itself | 24 |
| abstract_inverted_index.level, | 175 |
| abstract_inverted_index.lowest | 228 |
| abstract_inverted_index.method | 6, 53 |
| abstract_inverted_index.region | 156, 168 |
| abstract_inverted_index.reveal | 164 |
| abstract_inverted_index.robust | 268 |
| abstract_inverted_index.source | 47 |
| abstract_inverted_index.twice, | 253 |
| abstract_inverted_index.widely | 58 |
| abstract_inverted_index.within | 188 |
| abstract_inverted_index.years. | 161 |
| abstract_inverted_index.50-year | 190 |
| abstract_inverted_index.MCPSHA. | 117 |
| abstract_inverted_index.Shaanxi | 127 |
| abstract_inverted_index.VI-VII, | 243 |
| abstract_inverted_index.Western | 167 |
| abstract_inverted_index.adopted | 59 |
| abstract_inverted_index.between | 140, 246 |
| abstract_inverted_index.derived | 83 |
| abstract_inverted_index.diverse | 45 |
| abstract_inverted_index.drawing | 55 |
| abstract_inverted_index.extreme | 144, 250 |
| abstract_inverted_index.factors | 39 |
| abstract_inverted_index.follows | 207 |
| abstract_inverted_index.formula | 85 |
| abstract_inverted_index.highest | 236 |
| abstract_inverted_index.models. | 48 |
| abstract_inverted_index.period. | 104 |
| abstract_inverted_index.premium | 282 |
| abstract_inverted_index.program | 115 |
| abstract_inverted_index.seismic | 11, 219 |
| abstract_inverted_index.support | 270 |
| abstract_inverted_index.various | 198 |
| abstract_inverted_index.Notably, | 240 |
| abstract_inverted_index.analysis | 13 |
| abstract_inverted_index.approach | 22 |
| abstract_inverted_index.commonly | 148 |
| abstract_inverted_index.depicted | 177 |
| abstract_inverted_index.disaster | 67 |
| abstract_inverted_index.efficacy | 265 |
| abstract_inverted_index.employed | 149 |
| abstract_inverted_index.exhibits | 171 |
| abstract_inverted_index.findings | 163 |
| abstract_inverted_index.presents | 23 |
| abstract_inverted_index.research | 132 |
| abstract_inverted_index.selected | 124 |
| abstract_inverted_index.spatial, | 77 |
| abstract_inverted_index.Province, | 128 |
| abstract_inverted_index.adaptable | 29 |
| abstract_inverted_index.capturing | 75 |
| abstract_inverted_index.declining | 209 |
| abstract_inverted_index.disparity | 139 |
| abstract_inverted_index.efficacy, | 122 |
| abstract_inverted_index.efficient | 27 |
| abstract_inverted_index.enhancing | 276 |
| abstract_inverted_index.exceeding | 221, 229 |
| abstract_inverted_index.gradually | 254 |
| abstract_inverted_index.indicates | 226 |
| abstract_inverted_index.insurance | 281 |
| abstract_inverted_index.intensity | 91, 98, 220 |
| abstract_inverted_index.intricate | 38 |
| abstract_inverted_index.magnitude | 79 |
| abstract_inverted_index.model’s | 121, 264 |
| abstract_inverted_index.northeast | 233 |
| abstract_inverted_index.parameter | 42 |
| abstract_inverted_index.precision | 278 |
| abstract_inverted_index.providing | 267 |
| abstract_inverted_index.specified | 102 |
| abstract_inverted_index.surrogate | 147 |
| abstract_inverted_index.technical | 269 |
| abstract_inverted_index.temporal, | 76 |
| abstract_inverted_index.Leveraging | 49 |
| abstract_inverted_index.approaches | 252 |
| abstract_inverted_index.compelling | 17 |
| abstract_inverted_index.confronted | 36 |
| abstract_inverted_index.culminated | 108 |
| abstract_inverted_index.difference | 245 |
| abstract_inverted_index.earthquake | 46, 90, 195, 273, 280 |
| abstract_inverted_index.exceedance | 187 |
| abstract_inverted_index.heightened | 173 |
| abstract_inverted_index.illustrate | 182 |
| abstract_inverted_index.increasing | 257 |
| abstract_inverted_index.intensity. | 258 |
| abstract_inverted_index.likelihood | 217 |
| abstract_inverted_index.mitigating | 272 |
| abstract_inverted_index.northwest. | 239 |
| abstract_inverted_index.occurrence | 92, 99, 141, 151, 196, 247 |
| abstract_inverted_index.seismicity | 61, 73 |
| abstract_inverted_index.seismology | 65 |
| abstract_inverted_index.timeframe. | 191 |
| abstract_inverted_index.alternative | 30 |
| abstract_inverted_index.conjunction | 8 |
| abstract_inverted_index.constitutes | 15 |
| abstract_inverted_index.development | 111 |
| abstract_inverted_index.diminishing | 255 |
| abstract_inverted_index.engineering | 64 |
| abstract_inverted_index.intensities | 199, 242 |
| abstract_inverted_index.mitigation, | 68 |
| abstract_inverted_index.probability | 88, 142, 145, 185, 193, 230, 248, 251 |
| abstract_inverted_index.underscores | 261 |
| abstract_inverted_index.utilization | 1 |
| abstract_inverted_index.Cornell-type | 60 |
| abstract_inverted_index.Furthermore, | 215 |
| abstract_inverted_index.MATLAB-based | 114 |
| abstract_inverted_index.conventional | 32 |
| abstract_inverted_index.exploration. | 20 |
| abstract_inverted_index.particularly | 34 |
| abstract_inverted_index.probability) | 152 |
| abstract_inverted_index.calculations. | 284 |
| abstract_inverted_index.investigation | 135 |
| abstract_inverted_index.probabilistic | 10 |
| abstract_inverted_index.uncertainties | 43 |
| abstract_inverted_index.inhomogeneity, | 80 |
| cited_by_percentile_year | |
| corresponding_author_ids | https://openalex.org/A5039772620 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 4 |
| corresponding_institution_ids | https://openalex.org/I90149893 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/13 |
| sustainable_development_goals[0].score | 0.7400000095367432 |
| sustainable_development_goals[0].display_name | Climate action |
| citation_normalized_percentile.value | 0.0096462 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |