ME-ACP: Multi-view Neural Networks with Ensemble Model for Identification of Anticancer Peptides Article Swipe
YOU?
·
· 2021
· Open Access
·
· DOI: https://doi.org/10.1101/2021.11.22.469543
Cancer remains one of the most threatening diseases, which kills millions of lives every year. As a promising perspective for cancer treatments, anticancer peptides (ACPs) overcome a lot of disadvantages of traditional treatments. However, it is time-consuming and expensive to identify ACPs through conventional experiments. Hence, it is urgent and necessary to develop highly effective approaches to accurately identify ACPs in large amounts of protein sequences. In this work, we proposed a novel and effective method named ME-ACP which employed multi-view neural networks with ensemble model to identify ACPs. Firstly, we employed residue level and peptide level features preliminarily with ensemble models based on lightGBMs. Then, the outputs of lightGBM classifiers were fed into a hybrid deep neural network (HDNN) to identify ACPs. The experiments on independent test datasets demonstrated that ME-ACP achieved competitive performance on common evaluation metrics.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- https://doi.org/10.1101/2021.11.22.469543
- https://www.biorxiv.org/content/biorxiv/early/2021/11/23/2021.11.22.469543.full.pdf
- OA Status
- green
- Cited By
- 2
- References
- 22
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W3215825649
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3215825649Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1101/2021.11.22.469543Digital Object Identifier
- Title
-
ME-ACP: Multi-view Neural Networks with Ensemble Model for Identification of Anticancer PeptidesWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2021Year of publication
- Publication date
-
2021-11-22Full publication date if available
- Authors
-
Guanwen Feng, Hang Yao, Chaoneng Li, Ruyi Liu, Rungen Huang, Xiaopeng Fan, Ruiquan Ge, Qiguang MiaoList of authors in order
- Landing page
-
https://doi.org/10.1101/2021.11.22.469543Publisher landing page
- PDF URL
-
https://www.biorxiv.org/content/biorxiv/early/2021/11/23/2021.11.22.469543.full.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://www.biorxiv.org/content/biorxiv/early/2021/11/23/2021.11.22.469543.full.pdfDirect OA link when available
- Concepts
-
Artificial neural network, Computer science, Identification (biology), Artificial intelligence, Machine learning, Ensemble forecasting, Data mining, Biology, BotanyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
2Total citation count in OpenAlex
- Citations by year (recent)
-
2024: 1, 2023: 1Per-year citation counts (last 5 years)
- References (count)
-
22Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3215825649 |
|---|---|
| doi | https://doi.org/10.1101/2021.11.22.469543 |
| ids.doi | https://doi.org/10.1101/2021.11.22.469543 |
| ids.mag | 3215825649 |
| ids.openalex | https://openalex.org/W3215825649 |
| fwci | 0.19506485 |
| type | preprint |
| title | ME-ACP: Multi-view Neural Networks with Ensemble Model for Identification of Anticancer Peptides |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T12254 |
| topics[0].field.id | https://openalex.org/fields/13 |
| topics[0].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[0].score | 0.9998000264167786 |
| topics[0].domain.id | https://openalex.org/domains/1 |
| topics[0].domain.display_name | Life Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1312 |
| topics[0].subfield.display_name | Molecular Biology |
| topics[0].display_name | Machine Learning in Bioinformatics |
| topics[1].id | https://openalex.org/T12576 |
| topics[1].field.id | https://openalex.org/fields/13 |
| topics[1].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[1].score | 0.9991999864578247 |
| topics[1].domain.id | https://openalex.org/domains/1 |
| topics[1].domain.display_name | Life Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1312 |
| topics[1].subfield.display_name | Molecular Biology |
| topics[1].display_name | vaccines and immunoinformatics approaches |
| topics[2].id | https://openalex.org/T11103 |
| topics[2].field.id | https://openalex.org/fields/24 |
| topics[2].field.display_name | Immunology and Microbiology |
| topics[2].score | 0.9987000226974487 |
| topics[2].domain.id | https://openalex.org/domains/1 |
| topics[2].domain.display_name | Life Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2404 |
| topics[2].subfield.display_name | Microbiology |
| topics[2].display_name | Antimicrobial Peptides and Activities |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C50644808 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6798885464668274 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[0].display_name | Artificial neural network |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.6588491201400757 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C116834253 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6348296403884888 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q2039217 |
| concepts[2].display_name | Identification (biology) |
| concepts[3].id | https://openalex.org/C154945302 |
| concepts[3].level | 1 |
| concepts[3].score | 0.5647162795066833 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[3].display_name | Artificial intelligence |
| concepts[4].id | https://openalex.org/C119857082 |
| concepts[4].level | 1 |
| concepts[4].score | 0.4878368675708771 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[4].display_name | Machine learning |
| concepts[5].id | https://openalex.org/C119898033 |
| concepts[5].level | 2 |
| concepts[5].score | 0.4509609639644623 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q3433888 |
| concepts[5].display_name | Ensemble forecasting |
| concepts[6].id | https://openalex.org/C124101348 |
| concepts[6].level | 1 |
| concepts[6].score | 0.34185004234313965 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[6].display_name | Data mining |
| concepts[7].id | https://openalex.org/C86803240 |
| concepts[7].level | 0 |
| concepts[7].score | 0.0709821879863739 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[7].display_name | Biology |
| concepts[8].id | https://openalex.org/C59822182 |
| concepts[8].level | 1 |
| concepts[8].score | 0.0 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q441 |
| concepts[8].display_name | Botany |
| keywords[0].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[0].score | 0.6798885464668274 |
| keywords[0].display_name | Artificial neural network |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.6588491201400757 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/identification |
| keywords[2].score | 0.6348296403884888 |
| keywords[2].display_name | Identification (biology) |
| keywords[3].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[3].score | 0.5647162795066833 |
| keywords[3].display_name | Artificial intelligence |
| keywords[4].id | https://openalex.org/keywords/machine-learning |
| keywords[4].score | 0.4878368675708771 |
| keywords[4].display_name | Machine learning |
| keywords[5].id | https://openalex.org/keywords/ensemble-forecasting |
| keywords[5].score | 0.4509609639644623 |
| keywords[5].display_name | Ensemble forecasting |
| keywords[6].id | https://openalex.org/keywords/data-mining |
| keywords[6].score | 0.34185004234313965 |
| keywords[6].display_name | Data mining |
| keywords[7].id | https://openalex.org/keywords/biology |
| keywords[7].score | 0.0709821879863739 |
| keywords[7].display_name | Biology |
| language | en |
| locations[0].id | doi:10.1101/2021.11.22.469543 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306402567 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | bioRxiv (Cold Spring Harbor Laboratory) |
| locations[0].source.host_organization | https://openalex.org/I2750212522 |
| locations[0].source.host_organization_name | Cold Spring Harbor Laboratory |
| locations[0].source.host_organization_lineage | https://openalex.org/I2750212522 |
| locations[0].license | |
| locations[0].pdf_url | https://www.biorxiv.org/content/biorxiv/early/2021/11/23/2021.11.22.469543.full.pdf |
| locations[0].version | acceptedVersion |
| locations[0].raw_type | posted-content |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.1101/2021.11.22.469543 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5005164015 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-1190-676X |
| authorships[0].author.display_name | Guanwen Feng |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I149594827 |
| authorships[0].affiliations[0].raw_affiliation_string | Xi'an Key Laboratory of Big Data and Intelligent Vision, School of Computer Science and Technology, Xidian University, Xi'an, China |
| authorships[0].institutions[0].id | https://openalex.org/I149594827 |
| authorships[0].institutions[0].ror | https://ror.org/05s92vm98 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I149594827 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Xidian University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Guanwen Feng |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Xi'an Key Laboratory of Big Data and Intelligent Vision, School of Computer Science and Technology, Xidian University, Xi'an, China |
| authorships[1].author.id | https://openalex.org/A5059978268 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-7349-369X |
| authorships[1].author.display_name | Hang Yao |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I149594827 |
| authorships[1].affiliations[0].raw_affiliation_string | Xi'an Key Laboratory of Big Data and Intelligent Vision, School of Computer Science and Technology, Xidian University, Xi'an, China |
| authorships[1].institutions[0].id | https://openalex.org/I149594827 |
| authorships[1].institutions[0].ror | https://ror.org/05s92vm98 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I149594827 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Xidian University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Hang Yao |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Xi'an Key Laboratory of Big Data and Intelligent Vision, School of Computer Science and Technology, Xidian University, Xi'an, China |
| authorships[2].author.id | https://openalex.org/A5063155651 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-2781-4683 |
| authorships[2].author.display_name | Chaoneng Li |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I149594827 |
| authorships[2].affiliations[0].raw_affiliation_string | Xi'an Key Laboratory of Big Data and Intelligent Vision, School of Computer Science and Technology, Xidian University, Xi'an, China |
| authorships[2].institutions[0].id | https://openalex.org/I149594827 |
| authorships[2].institutions[0].ror | https://ror.org/05s92vm98 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I149594827 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Xidian University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Chaoneng Li |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Xi'an Key Laboratory of Big Data and Intelligent Vision, School of Computer Science and Technology, Xidian University, Xi'an, China |
| authorships[3].author.id | https://openalex.org/A5051643079 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-9231-1081 |
| authorships[3].author.display_name | Ruyi Liu |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I149594827 |
| authorships[3].affiliations[0].raw_affiliation_string | Xi'an Key Laboratory of Big Data and Intelligent Vision, School of Computer Science and Technology, Xidian University, Xi'an, China |
| authorships[3].institutions[0].id | https://openalex.org/I149594827 |
| authorships[3].institutions[0].ror | https://ror.org/05s92vm98 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I149594827 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Xidian University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Ruyi Liu |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Xi'an Key Laboratory of Big Data and Intelligent Vision, School of Computer Science and Technology, Xidian University, Xi'an, China |
| authorships[4].author.id | https://openalex.org/A5031524016 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Rungen Huang |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I50760025 |
| authorships[4].affiliations[0].raw_affiliation_string | School of Computer Science and Technology, Hangzhou Dianzi University, Hangzhou, China |
| authorships[4].institutions[0].id | https://openalex.org/I50760025 |
| authorships[4].institutions[0].ror | https://ror.org/0576gt767 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I50760025 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | Hangzhou Dianzi University |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Rungen Huang |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | School of Computer Science and Technology, Hangzhou Dianzi University, Hangzhou, China |
| authorships[5].author.id | https://openalex.org/A5079412089 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-9660-3636 |
| authorships[5].author.display_name | Xiaopeng Fan |
| authorships[5].countries | CN |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I4210144142 |
| authorships[5].affiliations[0].raw_affiliation_string | Hangzhou Institute of Advanced Technology, Hangzhou, China |
| authorships[5].institutions[0].id | https://openalex.org/I4210144142 |
| authorships[5].institutions[0].ror | https://ror.org/0473ary24 |
| authorships[5].institutions[0].type | facility |
| authorships[5].institutions[0].lineage | https://openalex.org/I4210144142 |
| authorships[5].institutions[0].country_code | CN |
| authorships[5].institutions[0].display_name | Hangzhou Institute of Applied Acoustics |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Xiaopeng Fan |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Hangzhou Institute of Advanced Technology, Hangzhou, China |
| authorships[6].author.id | https://openalex.org/A5052648973 |
| authorships[6].author.orcid | https://orcid.org/0000-0001-5713-5588 |
| authorships[6].author.display_name | Ruiquan Ge |
| authorships[6].countries | CN |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I50760025 |
| authorships[6].affiliations[0].raw_affiliation_string | School of Computer Science and Technology, Hangzhou Dianzi University, Hangzhou, China |
| authorships[6].institutions[0].id | https://openalex.org/I50760025 |
| authorships[6].institutions[0].ror | https://ror.org/0576gt767 |
| authorships[6].institutions[0].type | education |
| authorships[6].institutions[0].lineage | https://openalex.org/I50760025 |
| authorships[6].institutions[0].country_code | CN |
| authorships[6].institutions[0].display_name | Hangzhou Dianzi University |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Ruiquan Ge |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | School of Computer Science and Technology, Hangzhou Dianzi University, Hangzhou, China |
| authorships[7].author.id | https://openalex.org/A5007404362 |
| authorships[7].author.orcid | https://orcid.org/0000-0002-2872-388X |
| authorships[7].author.display_name | Qiguang Miao |
| authorships[7].countries | CN |
| authorships[7].affiliations[0].institution_ids | https://openalex.org/I149594827 |
| authorships[7].affiliations[0].raw_affiliation_string | Xi'an Key Laboratory of Big Data and Intelligent Vision, School of Computer Science and Technology, Xidian University, Xi'an, China |
| authorships[7].institutions[0].id | https://openalex.org/I149594827 |
| authorships[7].institutions[0].ror | https://ror.org/05s92vm98 |
| authorships[7].institutions[0].type | education |
| authorships[7].institutions[0].lineage | https://openalex.org/I149594827 |
| authorships[7].institutions[0].country_code | CN |
| authorships[7].institutions[0].display_name | Xidian University |
| authorships[7].author_position | last |
| authorships[7].raw_author_name | Qiguang Miao |
| authorships[7].is_corresponding | True |
| authorships[7].raw_affiliation_strings | Xi'an Key Laboratory of Big Data and Intelligent Vision, School of Computer Science and Technology, Xidian University, Xi'an, China |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.biorxiv.org/content/biorxiv/early/2021/11/23/2021.11.22.469543.full.pdf |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | ME-ACP: Multi-view Neural Networks with Ensemble Model for Identification of Anticancer Peptides |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T12254 |
| primary_topic.field.id | https://openalex.org/fields/13 |
| primary_topic.field.display_name | Biochemistry, Genetics and Molecular Biology |
| primary_topic.score | 0.9998000264167786 |
| primary_topic.domain.id | https://openalex.org/domains/1 |
| primary_topic.domain.display_name | Life Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1312 |
| primary_topic.subfield.display_name | Molecular Biology |
| primary_topic.display_name | Machine Learning in Bioinformatics |
| related_works | https://openalex.org/W2898732673, https://openalex.org/W2410053581, https://openalex.org/W2383658677, https://openalex.org/W3123203398, https://openalex.org/W2391251536, https://openalex.org/W2961085424, https://openalex.org/W1972473893, https://openalex.org/W2466435674, https://openalex.org/W2362198218, https://openalex.org/W2765200542 |
| cited_by_count | 2 |
| counts_by_year[0].year | 2024 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2023 |
| counts_by_year[1].cited_by_count | 1 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1101/2021.11.22.469543 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306402567 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | bioRxiv (Cold Spring Harbor Laboratory) |
| best_oa_location.source.host_organization | https://openalex.org/I2750212522 |
| best_oa_location.source.host_organization_name | Cold Spring Harbor Laboratory |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I2750212522 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://www.biorxiv.org/content/biorxiv/early/2021/11/23/2021.11.22.469543.full.pdf |
| best_oa_location.version | acceptedVersion |
| best_oa_location.raw_type | posted-content |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.1101/2021.11.22.469543 |
| primary_location.id | doi:10.1101/2021.11.22.469543 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306402567 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | bioRxiv (Cold Spring Harbor Laboratory) |
| primary_location.source.host_organization | https://openalex.org/I2750212522 |
| primary_location.source.host_organization_name | Cold Spring Harbor Laboratory |
| primary_location.source.host_organization_lineage | https://openalex.org/I2750212522 |
| primary_location.license | |
| primary_location.pdf_url | https://www.biorxiv.org/content/biorxiv/early/2021/11/23/2021.11.22.469543.full.pdf |
| primary_location.version | acceptedVersion |
| primary_location.raw_type | posted-content |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.1101/2021.11.22.469543 |
| publication_date | 2021-11-22 |
| publication_year | 2021 |
| referenced_works | https://openalex.org/W3005525322, https://openalex.org/W2808436555, https://openalex.org/W2795440402, https://openalex.org/W2118911320, https://openalex.org/W2074196504, https://openalex.org/W1995757481, https://openalex.org/W2340970647, https://openalex.org/W2747758005, https://openalex.org/W2806146459, https://openalex.org/W2987660980, https://openalex.org/W2943935116, https://openalex.org/W3113351953, https://openalex.org/W3045029128, https://openalex.org/W3128972055, https://openalex.org/W3184125572, https://openalex.org/W3206434204, https://openalex.org/W2768348081, https://openalex.org/W2194775991, https://openalex.org/W2079735306, https://openalex.org/W3048086963, https://openalex.org/W2148853951, https://openalex.org/W2060870711 |
| referenced_works_count | 22 |
| abstract_inverted_index.a | 17, 27, 72, 115 |
| abstract_inverted_index.As | 16 |
| abstract_inverted_index.In | 67 |
| abstract_inverted_index.in | 61 |
| abstract_inverted_index.is | 36, 48 |
| abstract_inverted_index.it | 35, 47 |
| abstract_inverted_index.of | 4, 12, 29, 31, 64, 109 |
| abstract_inverted_index.on | 104, 126, 136 |
| abstract_inverted_index.to | 40, 52, 57, 87, 121 |
| abstract_inverted_index.we | 70, 91 |
| abstract_inverted_index.The | 124 |
| abstract_inverted_index.and | 38, 50, 74, 95 |
| abstract_inverted_index.fed | 113 |
| abstract_inverted_index.for | 20 |
| abstract_inverted_index.lot | 28 |
| abstract_inverted_index.one | 3 |
| abstract_inverted_index.the | 5, 107 |
| abstract_inverted_index.ACPs | 42, 60 |
| abstract_inverted_index.deep | 117 |
| abstract_inverted_index.into | 114 |
| abstract_inverted_index.most | 6 |
| abstract_inverted_index.test | 128 |
| abstract_inverted_index.that | 131 |
| abstract_inverted_index.this | 68 |
| abstract_inverted_index.were | 112 |
| abstract_inverted_index.with | 84, 100 |
| abstract_inverted_index.ACPs. | 89, 123 |
| abstract_inverted_index.Then, | 106 |
| abstract_inverted_index.based | 103 |
| abstract_inverted_index.every | 14 |
| abstract_inverted_index.kills | 10 |
| abstract_inverted_index.large | 62 |
| abstract_inverted_index.level | 94, 97 |
| abstract_inverted_index.lives | 13 |
| abstract_inverted_index.model | 86 |
| abstract_inverted_index.named | 77 |
| abstract_inverted_index.novel | 73 |
| abstract_inverted_index.which | 9, 79 |
| abstract_inverted_index.work, | 69 |
| abstract_inverted_index.year. | 15 |
| abstract_inverted_index.(ACPs) | 25 |
| abstract_inverted_index.(HDNN) | 120 |
| abstract_inverted_index.Cancer | 1 |
| abstract_inverted_index.Hence, | 46 |
| abstract_inverted_index.ME-ACP | 78, 132 |
| abstract_inverted_index.cancer | 21 |
| abstract_inverted_index.common | 137 |
| abstract_inverted_index.highly | 54 |
| abstract_inverted_index.hybrid | 116 |
| abstract_inverted_index.method | 76 |
| abstract_inverted_index.models | 102 |
| abstract_inverted_index.neural | 82, 118 |
| abstract_inverted_index.urgent | 49 |
| abstract_inverted_index.amounts | 63 |
| abstract_inverted_index.develop | 53 |
| abstract_inverted_index.network | 119 |
| abstract_inverted_index.outputs | 108 |
| abstract_inverted_index.peptide | 96 |
| abstract_inverted_index.protein | 65 |
| abstract_inverted_index.remains | 2 |
| abstract_inverted_index.residue | 93 |
| abstract_inverted_index.through | 43 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.Firstly, | 90 |
| abstract_inverted_index.However, | 34 |
| abstract_inverted_index.achieved | 133 |
| abstract_inverted_index.datasets | 129 |
| abstract_inverted_index.employed | 80, 92 |
| abstract_inverted_index.ensemble | 85, 101 |
| abstract_inverted_index.features | 98 |
| abstract_inverted_index.identify | 41, 59, 88, 122 |
| abstract_inverted_index.lightGBM | 110 |
| abstract_inverted_index.metrics. | 139 |
| abstract_inverted_index.millions | 11 |
| abstract_inverted_index.networks | 83 |
| abstract_inverted_index.overcome | 26 |
| abstract_inverted_index.peptides | 24 |
| abstract_inverted_index.proposed | 71 |
| abstract_inverted_index.diseases, | 8 |
| abstract_inverted_index.effective | 55, 75 |
| abstract_inverted_index.expensive | 39 |
| abstract_inverted_index.necessary | 51 |
| abstract_inverted_index.promising | 18 |
| abstract_inverted_index.accurately | 58 |
| abstract_inverted_index.anticancer | 23 |
| abstract_inverted_index.approaches | 56 |
| abstract_inverted_index.evaluation | 138 |
| abstract_inverted_index.lightGBMs. | 105 |
| abstract_inverted_index.multi-view | 81 |
| abstract_inverted_index.sequences. | 66 |
| abstract_inverted_index.classifiers | 111 |
| abstract_inverted_index.competitive | 134 |
| abstract_inverted_index.experiments | 125 |
| abstract_inverted_index.independent | 127 |
| abstract_inverted_index.performance | 135 |
| abstract_inverted_index.perspective | 19 |
| abstract_inverted_index.threatening | 7 |
| abstract_inverted_index.traditional | 32 |
| abstract_inverted_index.treatments, | 22 |
| abstract_inverted_index.treatments. | 33 |
| abstract_inverted_index.conventional | 44 |
| abstract_inverted_index.demonstrated | 130 |
| abstract_inverted_index.experiments. | 45 |
| abstract_inverted_index.disadvantages | 30 |
| abstract_inverted_index.preliminarily | 99 |
| abstract_inverted_index.time-consuming | 37 |
| cited_by_percentile_year.max | 94 |
| cited_by_percentile_year.min | 89 |
| corresponding_author_ids | https://openalex.org/A5007404362 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 8 |
| corresponding_institution_ids | https://openalex.org/I149594827 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/3 |
| sustainable_development_goals[0].score | 0.5699999928474426 |
| sustainable_development_goals[0].display_name | Good health and well-being |
| citation_normalized_percentile.value | 0.52062766 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |