Measuring Similarity of Dual-Modal Academic Data Based on Multi-Fusion Representation Learning Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.1109/access.2024.3427731
Nowadays, academic materials such as articles, patents, lecture notes, and observation records often use both texts and images (i.e., dual-modal data) to illustrate scientific issues. Measuring the similarity of such dual-modal academic data largely depends on dual-modal features, which is far from satisfying in practice. To learn dual-modal feature representation, most current approaches mine interactions between texts and images on top of their fusion networks. This work proposes a multi-fusion deep learning framework that learns semantically richer dual-modal representations. The framework designs multiple fusion points in the feature space of various levels, and gradually integrates the fusion information from the low-level to the high-level. In addition, we develop a multi-channel decoding network with alternate fine-tuning strategies to mine modal-specific features and cross-modal correlations thoroughly. To our knowledge, this is the first work to bring forward deep learning functions for dual-modal academic data. It reduces the semantic and statistical attribute differences between two modalities, thereby learning robust representations. A large number of experiments conducted on real-world data sets show that our method has significant performance compared with state-of-the-art approaches.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1109/access.2024.3427731
- OA Status
- gold
- References
- 57
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4400645628
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4400645628Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1109/access.2024.3427731Digital Object Identifier
- Title
-
Measuring Similarity of Dual-Modal Academic Data Based on Multi-Fusion Representation LearningWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-01-01Full publication date if available
- Authors
-
Li Zhang, Qiang Gao, Ming Liu, Zepeng Gu, Bo LangList of authors in order
- Landing page
-
https://doi.org/10.1109/access.2024.3427731Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1109/access.2024.3427731Direct OA link when available
- Concepts
-
Modal, Computer science, Dual (grammatical number), Similarity (geometry), Representation (politics), Artificial intelligence, Modalities, Feature (linguistics), Feature learning, Sensor fusion, Machine learning, External Data Representation, Data mining, Pattern recognition (psychology), Image (mathematics), Political science, Law, Art, Philosophy, Linguistics, Social science, Polymer chemistry, Politics, Sociology, Literature, ChemistryTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
57Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4400645628 |
|---|---|
| doi | https://doi.org/10.1109/access.2024.3427731 |
| ids.doi | https://doi.org/10.1109/access.2024.3427731 |
| ids.openalex | https://openalex.org/W4400645628 |
| fwci | 0.0 |
| type | article |
| title | Measuring Similarity of Dual-Modal Academic Data Based on Multi-Fusion Representation Learning |
| awards[0].id | https://openalex.org/G5289941037 |
| awards[0].funder_id | https://openalex.org/F4320321106 |
| awards[0].display_name | |
| awards[0].funder_award_id | 22YJCZH241 |
| awards[0].funder_display_name | Ministry of Education of the People's Republic of China |
| biblio.issue | |
| biblio.volume | 12 |
| biblio.last_page | 97711 |
| biblio.first_page | 97701 |
| topics[0].id | https://openalex.org/T11714 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9995999932289124 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Multimodal Machine Learning Applications |
| topics[1].id | https://openalex.org/T10627 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9991000294685364 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1707 |
| topics[1].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[1].display_name | Advanced Image and Video Retrieval Techniques |
| topics[2].id | https://openalex.org/T11307 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9986000061035156 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Domain Adaptation and Few-Shot Learning |
| funders[0].id | https://openalex.org/F4320321106 |
| funders[0].ror | https://ror.org/01mv9t934 |
| funders[0].display_name | Ministry of Education of the People's Republic of China |
| funders[1].id | https://openalex.org/F4320326978 |
| funders[1].ror | |
| funders[1].display_name | State Key Laboratory of Software Development Environment |
| is_xpac | False |
| apc_list.value | 1850 |
| apc_list.currency | USD |
| apc_list.value_usd | 1850 |
| apc_paid.value | 1850 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 1850 |
| concepts[0].id | https://openalex.org/C71139939 |
| concepts[0].level | 2 |
| concepts[0].score | 0.777770459651947 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q910194 |
| concepts[0].display_name | Modal |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.7091993093490601 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C2780980858 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6733556985855103 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q110022 |
| concepts[2].display_name | Dual (grammatical number) |
| concepts[3].id | https://openalex.org/C103278499 |
| concepts[3].level | 3 |
| concepts[3].score | 0.6108387112617493 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q254465 |
| concepts[3].display_name | Similarity (geometry) |
| concepts[4].id | https://openalex.org/C2776359362 |
| concepts[4].level | 3 |
| concepts[4].score | 0.6013965010643005 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q2145286 |
| concepts[4].display_name | Representation (politics) |
| concepts[5].id | https://openalex.org/C154945302 |
| concepts[5].level | 1 |
| concepts[5].score | 0.5507984757423401 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[5].display_name | Artificial intelligence |
| concepts[6].id | https://openalex.org/C2779903281 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5318481922149658 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q6888026 |
| concepts[6].display_name | Modalities |
| concepts[7].id | https://openalex.org/C2776401178 |
| concepts[7].level | 2 |
| concepts[7].score | 0.5278672575950623 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q12050496 |
| concepts[7].display_name | Feature (linguistics) |
| concepts[8].id | https://openalex.org/C59404180 |
| concepts[8].level | 2 |
| concepts[8].score | 0.5169677138328552 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q17013334 |
| concepts[8].display_name | Feature learning |
| concepts[9].id | https://openalex.org/C33954974 |
| concepts[9].level | 2 |
| concepts[9].score | 0.5153607726097107 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q486494 |
| concepts[9].display_name | Sensor fusion |
| concepts[10].id | https://openalex.org/C119857082 |
| concepts[10].level | 1 |
| concepts[10].score | 0.4422617256641388 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[10].display_name | Machine learning |
| concepts[11].id | https://openalex.org/C116409475 |
| concepts[11].level | 2 |
| concepts[11].score | 0.4317348599433899 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q1385056 |
| concepts[11].display_name | External Data Representation |
| concepts[12].id | https://openalex.org/C124101348 |
| concepts[12].level | 1 |
| concepts[12].score | 0.3860240876674652 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[12].display_name | Data mining |
| concepts[13].id | https://openalex.org/C153180895 |
| concepts[13].level | 2 |
| concepts[13].score | 0.36163508892059326 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[13].display_name | Pattern recognition (psychology) |
| concepts[14].id | https://openalex.org/C115961682 |
| concepts[14].level | 2 |
| concepts[14].score | 0.11701574921607971 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q860623 |
| concepts[14].display_name | Image (mathematics) |
| concepts[15].id | https://openalex.org/C17744445 |
| concepts[15].level | 0 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q36442 |
| concepts[15].display_name | Political science |
| concepts[16].id | https://openalex.org/C199539241 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q7748 |
| concepts[16].display_name | Law |
| concepts[17].id | https://openalex.org/C142362112 |
| concepts[17].level | 0 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q735 |
| concepts[17].display_name | Art |
| concepts[18].id | https://openalex.org/C138885662 |
| concepts[18].level | 0 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[18].display_name | Philosophy |
| concepts[19].id | https://openalex.org/C41895202 |
| concepts[19].level | 1 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q8162 |
| concepts[19].display_name | Linguistics |
| concepts[20].id | https://openalex.org/C36289849 |
| concepts[20].level | 1 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q34749 |
| concepts[20].display_name | Social science |
| concepts[21].id | https://openalex.org/C188027245 |
| concepts[21].level | 1 |
| concepts[21].score | 0.0 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q750446 |
| concepts[21].display_name | Polymer chemistry |
| concepts[22].id | https://openalex.org/C94625758 |
| concepts[22].level | 2 |
| concepts[22].score | 0.0 |
| concepts[22].wikidata | https://www.wikidata.org/wiki/Q7163 |
| concepts[22].display_name | Politics |
| concepts[23].id | https://openalex.org/C144024400 |
| concepts[23].level | 0 |
| concepts[23].score | 0.0 |
| concepts[23].wikidata | https://www.wikidata.org/wiki/Q21201 |
| concepts[23].display_name | Sociology |
| concepts[24].id | https://openalex.org/C124952713 |
| concepts[24].level | 1 |
| concepts[24].score | 0.0 |
| concepts[24].wikidata | https://www.wikidata.org/wiki/Q8242 |
| concepts[24].display_name | Literature |
| concepts[25].id | https://openalex.org/C185592680 |
| concepts[25].level | 0 |
| concepts[25].score | 0.0 |
| concepts[25].wikidata | https://www.wikidata.org/wiki/Q2329 |
| concepts[25].display_name | Chemistry |
| keywords[0].id | https://openalex.org/keywords/modal |
| keywords[0].score | 0.777770459651947 |
| keywords[0].display_name | Modal |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.7091993093490601 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/dual |
| keywords[2].score | 0.6733556985855103 |
| keywords[2].display_name | Dual (grammatical number) |
| keywords[3].id | https://openalex.org/keywords/similarity |
| keywords[3].score | 0.6108387112617493 |
| keywords[3].display_name | Similarity (geometry) |
| keywords[4].id | https://openalex.org/keywords/representation |
| keywords[4].score | 0.6013965010643005 |
| keywords[4].display_name | Representation (politics) |
| keywords[5].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[5].score | 0.5507984757423401 |
| keywords[5].display_name | Artificial intelligence |
| keywords[6].id | https://openalex.org/keywords/modalities |
| keywords[6].score | 0.5318481922149658 |
| keywords[6].display_name | Modalities |
| keywords[7].id | https://openalex.org/keywords/feature |
| keywords[7].score | 0.5278672575950623 |
| keywords[7].display_name | Feature (linguistics) |
| keywords[8].id | https://openalex.org/keywords/feature-learning |
| keywords[8].score | 0.5169677138328552 |
| keywords[8].display_name | Feature learning |
| keywords[9].id | https://openalex.org/keywords/sensor-fusion |
| keywords[9].score | 0.5153607726097107 |
| keywords[9].display_name | Sensor fusion |
| keywords[10].id | https://openalex.org/keywords/machine-learning |
| keywords[10].score | 0.4422617256641388 |
| keywords[10].display_name | Machine learning |
| keywords[11].id | https://openalex.org/keywords/external-data-representation |
| keywords[11].score | 0.4317348599433899 |
| keywords[11].display_name | External Data Representation |
| keywords[12].id | https://openalex.org/keywords/data-mining |
| keywords[12].score | 0.3860240876674652 |
| keywords[12].display_name | Data mining |
| keywords[13].id | https://openalex.org/keywords/pattern-recognition |
| keywords[13].score | 0.36163508892059326 |
| keywords[13].display_name | Pattern recognition (psychology) |
| keywords[14].id | https://openalex.org/keywords/image |
| keywords[14].score | 0.11701574921607971 |
| keywords[14].display_name | Image (mathematics) |
| language | en |
| locations[0].id | doi:10.1109/access.2024.3427731 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2485537415 |
| locations[0].source.issn | 2169-3536 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2169-3536 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | IEEE Access |
| locations[0].source.host_organization | https://openalex.org/P4310319808 |
| locations[0].source.host_organization_name | Institute of Electrical and Electronics Engineers |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319808 |
| locations[0].source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | IEEE Access |
| locations[0].landing_page_url | https://doi.org/10.1109/access.2024.3427731 |
| locations[1].id | pmh:oai:doaj.org/article:ee4263d716e94ea0a7d4656e138ed07e |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | IEEE Access, Vol 12, Pp 97701-97711 (2024) |
| locations[1].landing_page_url | https://doaj.org/article/ee4263d716e94ea0a7d4656e138ed07e |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5103429477 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-7621-568X |
| authorships[0].author.display_name | Li Zhang |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I78675632 |
| authorships[0].affiliations[0].raw_affiliation_string | School of Public Administration and Communication, Beijing Information Science and Technology University, Beijing, China |
| authorships[0].institutions[0].id | https://openalex.org/I78675632 |
| authorships[0].institutions[0].ror | https://ror.org/04xnqep60 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I78675632 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Beijing Information Science & Technology University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Li Zhang |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | School of Public Administration and Communication, Beijing Information Science and Technology University, Beijing, China |
| authorships[1].author.id | https://openalex.org/A5111740016 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Qiang Gao |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I4210087772 |
| authorships[1].affiliations[0].raw_affiliation_string | National Computer Network Emergency Response Technical Team/Coordination Center of China, Beijing, China |
| authorships[1].institutions[0].id | https://openalex.org/I4210087772 |
| authorships[1].institutions[0].ror | https://ror.org/00247dh76 |
| authorships[1].institutions[0].type | nonprofit |
| authorships[1].institutions[0].lineage | https://openalex.org/I4210087772 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | National Computer Network Emergency Response Technical Team/Coordination Center of Chinar |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Qiang Gao |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | National Computer Network Emergency Response Technical Team/Coordination Center of China, Beijing, China |
| authorships[2].author.id | https://openalex.org/A5106417965 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-0480-0457 |
| authorships[2].author.display_name | Ming Liu |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I4210087772 |
| authorships[2].affiliations[0].raw_affiliation_string | National Computer Network Emergency Response Technical Team/Coordination Center of China, Beijing, China |
| authorships[2].institutions[0].id | https://openalex.org/I4210087772 |
| authorships[2].institutions[0].ror | https://ror.org/00247dh76 |
| authorships[2].institutions[0].type | nonprofit |
| authorships[2].institutions[0].lineage | https://openalex.org/I4210087772 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | National Computer Network Emergency Response Technical Team/Coordination Center of Chinar |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Ming Liu |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | National Computer Network Emergency Response Technical Team/Coordination Center of China, Beijing, China |
| authorships[3].author.id | https://openalex.org/A5012663138 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Zepeng Gu |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I82880672 |
| authorships[3].affiliations[0].raw_affiliation_string | State Key Laboratory of Software Development Environment, Beihang University, Beijing, China |
| authorships[3].institutions[0].id | https://openalex.org/I82880672 |
| authorships[3].institutions[0].ror | https://ror.org/00wk2mp56 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I82880672 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Beihang University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Zepeng Gu |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | State Key Laboratory of Software Development Environment, Beihang University, Beijing, China |
| authorships[4].author.id | https://openalex.org/A5100310123 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Bo Lang |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I82880672 |
| authorships[4].affiliations[0].raw_affiliation_string | State Key Laboratory of Software Development Environment, Beihang University, Beijing, China |
| authorships[4].institutions[0].id | https://openalex.org/I82880672 |
| authorships[4].institutions[0].ror | https://ror.org/00wk2mp56 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I82880672 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | Beihang University |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Bo Lang |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | State Key Laboratory of Software Development Environment, Beihang University, Beijing, China |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1109/access.2024.3427731 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Measuring Similarity of Dual-Modal Academic Data Based on Multi-Fusion Representation Learning |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11714 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9995999932289124 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Multimodal Machine Learning Applications |
| related_works | https://openalex.org/W4301143707, https://openalex.org/W2952745240, https://openalex.org/W2952512863, https://openalex.org/W3134504629, https://openalex.org/W2938696877, https://openalex.org/W4323911413, https://openalex.org/W2147693476, https://openalex.org/W4286796787, https://openalex.org/W2952582877, https://openalex.org/W3170043432 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | doi:10.1109/access.2024.3427731 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2485537415 |
| best_oa_location.source.issn | 2169-3536 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2169-3536 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | IEEE Access |
| best_oa_location.source.host_organization | https://openalex.org/P4310319808 |
| best_oa_location.source.host_organization_name | Institute of Electrical and Electronics Engineers |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310319808 |
| best_oa_location.source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| best_oa_location.license | |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | IEEE Access |
| best_oa_location.landing_page_url | https://doi.org/10.1109/access.2024.3427731 |
| primary_location.id | doi:10.1109/access.2024.3427731 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2485537415 |
| primary_location.source.issn | 2169-3536 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2169-3536 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | IEEE Access |
| primary_location.source.host_organization | https://openalex.org/P4310319808 |
| primary_location.source.host_organization_name | Institute of Electrical and Electronics Engineers |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319808 |
| primary_location.source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | IEEE Access |
| primary_location.landing_page_url | https://doi.org/10.1109/access.2024.3427731 |
| publication_date | 2024-01-01 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W4293732274, https://openalex.org/W4378977057, https://openalex.org/W4398254447, https://openalex.org/W4388565827, https://openalex.org/W4310673758, https://openalex.org/W4323657311, https://openalex.org/W4376226279, https://openalex.org/W2618530766, https://openalex.org/W2774861092, https://openalex.org/W2412709527, https://openalex.org/W3128116186, https://openalex.org/W4385245566, https://openalex.org/W6778883912, https://openalex.org/W6810738896, https://openalex.org/W4285294723, https://openalex.org/W6849079066, https://openalex.org/W4307640249, https://openalex.org/W4213299273, https://openalex.org/W4385571886, https://openalex.org/W3185341429, https://openalex.org/W6741002519, https://openalex.org/W2020842694, https://openalex.org/W6686207219, https://openalex.org/W2106277773, https://openalex.org/W6637028002, https://openalex.org/W1964073652, https://openalex.org/W6730042849, https://openalex.org/W6764096679, https://openalex.org/W2560730294, https://openalex.org/W2883409523, https://openalex.org/W2766788829, https://openalex.org/W2937328183, https://openalex.org/W3038645517, https://openalex.org/W3040984225, https://openalex.org/W3034849760, https://openalex.org/W2527276685, https://openalex.org/W2970231061, https://openalex.org/W2998356391, https://openalex.org/W6637373629, https://openalex.org/W3175095612, https://openalex.org/W4312877428, https://openalex.org/W6811013733, https://openalex.org/W2126598020, https://openalex.org/W2252433728, https://openalex.org/W2556418146, https://openalex.org/W6755207826, https://openalex.org/W6682359208, https://openalex.org/W2194775991, https://openalex.org/W2611650229, https://openalex.org/W4293503257, https://openalex.org/W1686810756, https://openalex.org/W4396952261, https://openalex.org/W2963214665, https://openalex.org/W3104536742, https://openalex.org/W3101156210, https://openalex.org/W4226182655, https://openalex.org/W2736601468 |
| referenced_works_count | 57 |
| abstract_inverted_index.A | 157 |
| abstract_inverted_index.a | 68, 108 |
| abstract_inverted_index.In | 104 |
| abstract_inverted_index.It | 142 |
| abstract_inverted_index.To | 45, 124 |
| abstract_inverted_index.as | 4 |
| abstract_inverted_index.in | 43, 85 |
| abstract_inverted_index.is | 39, 128 |
| abstract_inverted_index.of | 28, 61, 89, 160 |
| abstract_inverted_index.on | 35, 59, 163 |
| abstract_inverted_index.to | 21, 101, 116, 132 |
| abstract_inverted_index.we | 106 |
| abstract_inverted_index.The | 79 |
| abstract_inverted_index.and | 9, 16, 57, 92, 120, 146 |
| abstract_inverted_index.far | 40 |
| abstract_inverted_index.for | 138 |
| abstract_inverted_index.has | 171 |
| abstract_inverted_index.our | 125, 169 |
| abstract_inverted_index.the | 26, 86, 95, 99, 102, 129, 144 |
| abstract_inverted_index.top | 60 |
| abstract_inverted_index.two | 151 |
| abstract_inverted_index.use | 13 |
| abstract_inverted_index.This | 65 |
| abstract_inverted_index.both | 14 |
| abstract_inverted_index.data | 32, 165 |
| abstract_inverted_index.deep | 70, 135 |
| abstract_inverted_index.from | 41, 98 |
| abstract_inverted_index.mine | 53, 117 |
| abstract_inverted_index.most | 50 |
| abstract_inverted_index.sets | 166 |
| abstract_inverted_index.show | 167 |
| abstract_inverted_index.such | 3, 29 |
| abstract_inverted_index.that | 73, 168 |
| abstract_inverted_index.this | 127 |
| abstract_inverted_index.with | 112, 175 |
| abstract_inverted_index.work | 66, 131 |
| abstract_inverted_index.bring | 133 |
| abstract_inverted_index.data) | 20 |
| abstract_inverted_index.data. | 141 |
| abstract_inverted_index.first | 130 |
| abstract_inverted_index.large | 158 |
| abstract_inverted_index.learn | 46 |
| abstract_inverted_index.often | 12 |
| abstract_inverted_index.space | 88 |
| abstract_inverted_index.texts | 15, 56 |
| abstract_inverted_index.their | 62 |
| abstract_inverted_index.which | 38 |
| abstract_inverted_index.(i.e., | 18 |
| abstract_inverted_index.fusion | 63, 83, 96 |
| abstract_inverted_index.images | 17, 58 |
| abstract_inverted_index.learns | 74 |
| abstract_inverted_index.method | 170 |
| abstract_inverted_index.notes, | 8 |
| abstract_inverted_index.number | 159 |
| abstract_inverted_index.points | 84 |
| abstract_inverted_index.richer | 76 |
| abstract_inverted_index.robust | 155 |
| abstract_inverted_index.between | 55, 150 |
| abstract_inverted_index.current | 51 |
| abstract_inverted_index.depends | 34 |
| abstract_inverted_index.designs | 81 |
| abstract_inverted_index.develop | 107 |
| abstract_inverted_index.feature | 48, 87 |
| abstract_inverted_index.forward | 134 |
| abstract_inverted_index.issues. | 24 |
| abstract_inverted_index.largely | 33 |
| abstract_inverted_index.lecture | 7 |
| abstract_inverted_index.levels, | 91 |
| abstract_inverted_index.network | 111 |
| abstract_inverted_index.records | 11 |
| abstract_inverted_index.reduces | 143 |
| abstract_inverted_index.thereby | 153 |
| abstract_inverted_index.various | 90 |
| abstract_inverted_index.academic | 1, 31, 140 |
| abstract_inverted_index.compared | 174 |
| abstract_inverted_index.decoding | 110 |
| abstract_inverted_index.features | 119 |
| abstract_inverted_index.learning | 71, 136, 154 |
| abstract_inverted_index.multiple | 82 |
| abstract_inverted_index.patents, | 6 |
| abstract_inverted_index.proposes | 67 |
| abstract_inverted_index.semantic | 145 |
| abstract_inverted_index.Measuring | 25 |
| abstract_inverted_index.Nowadays, | 0 |
| abstract_inverted_index.addition, | 105 |
| abstract_inverted_index.alternate | 113 |
| abstract_inverted_index.articles, | 5 |
| abstract_inverted_index.attribute | 148 |
| abstract_inverted_index.conducted | 162 |
| abstract_inverted_index.features, | 37 |
| abstract_inverted_index.framework | 72, 80 |
| abstract_inverted_index.functions | 137 |
| abstract_inverted_index.gradually | 93 |
| abstract_inverted_index.low-level | 100 |
| abstract_inverted_index.materials | 2 |
| abstract_inverted_index.networks. | 64 |
| abstract_inverted_index.practice. | 44 |
| abstract_inverted_index.approaches | 52 |
| abstract_inverted_index.dual-modal | 19, 30, 36, 47, 77, 139 |
| abstract_inverted_index.illustrate | 22 |
| abstract_inverted_index.integrates | 94 |
| abstract_inverted_index.knowledge, | 126 |
| abstract_inverted_index.real-world | 164 |
| abstract_inverted_index.satisfying | 42 |
| abstract_inverted_index.scientific | 23 |
| abstract_inverted_index.similarity | 27 |
| abstract_inverted_index.strategies | 115 |
| abstract_inverted_index.approaches. | 177 |
| abstract_inverted_index.cross-modal | 121 |
| abstract_inverted_index.differences | 149 |
| abstract_inverted_index.experiments | 161 |
| abstract_inverted_index.fine-tuning | 114 |
| abstract_inverted_index.high-level. | 103 |
| abstract_inverted_index.information | 97 |
| abstract_inverted_index.modalities, | 152 |
| abstract_inverted_index.observation | 10 |
| abstract_inverted_index.performance | 173 |
| abstract_inverted_index.significant | 172 |
| abstract_inverted_index.statistical | 147 |
| abstract_inverted_index.thoroughly. | 123 |
| abstract_inverted_index.correlations | 122 |
| abstract_inverted_index.interactions | 54 |
| abstract_inverted_index.multi-fusion | 69 |
| abstract_inverted_index.semantically | 75 |
| abstract_inverted_index.multi-channel | 109 |
| abstract_inverted_index.modal-specific | 118 |
| abstract_inverted_index.representation, | 49 |
| abstract_inverted_index.representations. | 78, 156 |
| abstract_inverted_index.state-of-the-art | 176 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 5 |
| citation_normalized_percentile.value | 0.12572817 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |