Medical domain knowledge in domain-agnostic generative AI Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.1101/2022.01.10.22269025
The text-guided diffusion model GLIDE (Guided Language to Image Diffusion for Generation and Editing) is the state of the art in text-to-image generative artificial intelligence (AI). GLIDE has rich representations, but medical applications of this model have not been systematically explored. If GLIDE had useful medical knowledge, it could be used for medical image analysis tasks, a domain in which AI systems are still highly engineered towards a single use-case. Here we show that the publicly available GLIDE model has reasonably strong representations of key topics in cancer research and oncology, in particular the general style of histopathology images and multiple facets of diseases, pathological processes and laboratory assays. However, GLIDE seems to lack useful representations of the style and content of radiology data. Our findings demonstrate that domain-agnostic generative AI models can learn relevant medical concepts without explicit training. Thus, GLIDE and similar models might be useful for medical image processing tasks in the future - particularly with additional domain-specific fine-tuning.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- https://doi.org/10.1101/2022.01.10.22269025
- https://www.medrxiv.org/content/medrxiv/early/2022/01/11/2022.01.10.22269025.full.pdf
- OA Status
- green
- Cited By
- 4
- References
- 8
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4205608468
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4205608468Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1101/2022.01.10.22269025Digital Object Identifier
- Title
-
Medical domain knowledge in domain-agnostic generative AIWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-01-11Full publication date if available
- Authors
-
Jakob Nikolas Kather, Narmin Ghaffari Laleh, Sebastian Foersch, Daniel TruhnList of authors in order
- Landing page
-
https://doi.org/10.1101/2022.01.10.22269025Publisher landing page
- PDF URL
-
https://www.medrxiv.org/content/medrxiv/early/2022/01/11/2022.01.10.22269025.full.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://www.medrxiv.org/content/medrxiv/early/2022/01/11/2022.01.10.22269025.full.pdfDirect OA link when available
- Concepts
-
Domain (mathematical analysis), Generative grammar, Computer science, Generative model, Artificial intelligence, Image (mathematics), Domain knowledge, Natural language processing, Mathematics, Mathematical analysisTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
4Total citation count in OpenAlex
- Citations by year (recent)
-
2024: 3, 2023: 1Per-year citation counts (last 5 years)
- References (count)
-
8Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4205608468 |
|---|---|
| doi | https://doi.org/10.1101/2022.01.10.22269025 |
| ids.doi | https://doi.org/10.1101/2022.01.10.22269025 |
| ids.openalex | https://openalex.org/W4205608468 |
| fwci | 0.78319528 |
| type | preprint |
| title | Medical domain knowledge in domain-agnostic generative AI |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10862 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9948999881744385 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | AI in cancer detection |
| topics[1].id | https://openalex.org/T11287 |
| topics[1].field.id | https://openalex.org/fields/13 |
| topics[1].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[1].score | 0.9761000275611877 |
| topics[1].domain.id | https://openalex.org/domains/1 |
| topics[1].domain.display_name | Life Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1306 |
| topics[1].subfield.display_name | Cancer Research |
| topics[1].display_name | Cancer Genomics and Diagnostics |
| topics[2].id | https://openalex.org/T11636 |
| topics[2].field.id | https://openalex.org/fields/27 |
| topics[2].field.display_name | Medicine |
| topics[2].score | 0.9575999975204468 |
| topics[2].domain.id | https://openalex.org/domains/4 |
| topics[2].domain.display_name | Health Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2718 |
| topics[2].subfield.display_name | Health Informatics |
| topics[2].display_name | Artificial Intelligence in Healthcare and Education |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C36503486 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7434247732162476 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q11235244 |
| concepts[0].display_name | Domain (mathematical analysis) |
| concepts[1].id | https://openalex.org/C39890363 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7350677847862244 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q36108 |
| concepts[1].display_name | Generative grammar |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.6869033575057983 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C167966045 |
| concepts[3].level | 3 |
| concepts[3].score | 0.56552654504776 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q5532625 |
| concepts[3].display_name | Generative model |
| concepts[4].id | https://openalex.org/C154945302 |
| concepts[4].level | 1 |
| concepts[4].score | 0.5525540709495544 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[4].display_name | Artificial intelligence |
| concepts[5].id | https://openalex.org/C115961682 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5242460370063782 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q860623 |
| concepts[5].display_name | Image (mathematics) |
| concepts[6].id | https://openalex.org/C207685749 |
| concepts[6].level | 2 |
| concepts[6].score | 0.434871643781662 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q2088941 |
| concepts[6].display_name | Domain knowledge |
| concepts[7].id | https://openalex.org/C204321447 |
| concepts[7].level | 1 |
| concepts[7].score | 0.3923502564430237 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q30642 |
| concepts[7].display_name | Natural language processing |
| concepts[8].id | https://openalex.org/C33923547 |
| concepts[8].level | 0 |
| concepts[8].score | 0.09074020385742188 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[8].display_name | Mathematics |
| concepts[9].id | https://openalex.org/C134306372 |
| concepts[9].level | 1 |
| concepts[9].score | 0.0 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q7754 |
| concepts[9].display_name | Mathematical analysis |
| keywords[0].id | https://openalex.org/keywords/domain |
| keywords[0].score | 0.7434247732162476 |
| keywords[0].display_name | Domain (mathematical analysis) |
| keywords[1].id | https://openalex.org/keywords/generative-grammar |
| keywords[1].score | 0.7350677847862244 |
| keywords[1].display_name | Generative grammar |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.6869033575057983 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/generative-model |
| keywords[3].score | 0.56552654504776 |
| keywords[3].display_name | Generative model |
| keywords[4].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[4].score | 0.5525540709495544 |
| keywords[4].display_name | Artificial intelligence |
| keywords[5].id | https://openalex.org/keywords/image |
| keywords[5].score | 0.5242460370063782 |
| keywords[5].display_name | Image (mathematics) |
| keywords[6].id | https://openalex.org/keywords/domain-knowledge |
| keywords[6].score | 0.434871643781662 |
| keywords[6].display_name | Domain knowledge |
| keywords[7].id | https://openalex.org/keywords/natural-language-processing |
| keywords[7].score | 0.3923502564430237 |
| keywords[7].display_name | Natural language processing |
| keywords[8].id | https://openalex.org/keywords/mathematics |
| keywords[8].score | 0.09074020385742188 |
| keywords[8].display_name | Mathematics |
| language | en |
| locations[0].id | doi:10.1101/2022.01.10.22269025 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306402567 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | bioRxiv (Cold Spring Harbor Laboratory) |
| locations[0].source.host_organization | https://openalex.org/I2750212522 |
| locations[0].source.host_organization_name | Cold Spring Harbor Laboratory |
| locations[0].source.host_organization_lineage | https://openalex.org/I2750212522 |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.medrxiv.org/content/medrxiv/early/2022/01/11/2022.01.10.22269025.full.pdf |
| locations[0].version | acceptedVersion |
| locations[0].raw_type | posted-content |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.1101/2022.01.10.22269025 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5073483894 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-3730-5348 |
| authorships[0].author.display_name | Jakob Nikolas Kather |
| authorships[0].countries | DE, GB |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I887968799 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Medicine III, University Hospital RWTH Aachen, Aachen, Germany |
| authorships[0].affiliations[1].institution_ids | https://openalex.org/I130828816 |
| authorships[0].affiliations[1].raw_affiliation_string | Pathology & Data Analytics, Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, UK |
| authorships[0].affiliations[2].institution_ids | https://openalex.org/I223822909, https://openalex.org/I2802164966, https://openalex.org/I4210111460 |
| authorships[0].affiliations[2].raw_affiliation_string | Medical Oncology, National Center for Tumor Diseases (NCT), University Hospital Heidelberg, Heidelberg, Germany |
| authorships[0].institutions[0].id | https://openalex.org/I223822909 |
| authorships[0].institutions[0].ror | https://ror.org/038t36y30 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I223822909 |
| authorships[0].institutions[0].country_code | DE |
| authorships[0].institutions[0].display_name | Heidelberg University |
| authorships[0].institutions[1].id | https://openalex.org/I4210111460 |
| authorships[0].institutions[1].ror | https://ror.org/01txwsw02 |
| authorships[0].institutions[1].type | healthcare |
| authorships[0].institutions[1].lineage | https://openalex.org/I4210111460 |
| authorships[0].institutions[1].country_code | DE |
| authorships[0].institutions[1].display_name | National Center for Tumor Diseases |
| authorships[0].institutions[2].id | https://openalex.org/I887968799 |
| authorships[0].institutions[2].ror | https://ror.org/04xfq0f34 |
| authorships[0].institutions[2].type | education |
| authorships[0].institutions[2].lineage | https://openalex.org/I887968799 |
| authorships[0].institutions[2].country_code | DE |
| authorships[0].institutions[2].display_name | RWTH Aachen University |
| authorships[0].institutions[3].id | https://openalex.org/I2802164966 |
| authorships[0].institutions[3].ror | https://ror.org/013czdx64 |
| authorships[0].institutions[3].type | healthcare |
| authorships[0].institutions[3].lineage | https://openalex.org/I2802164966 |
| authorships[0].institutions[3].country_code | DE |
| authorships[0].institutions[3].display_name | University Hospital Heidelberg |
| authorships[0].institutions[4].id | https://openalex.org/I130828816 |
| authorships[0].institutions[4].ror | https://ror.org/024mrxd33 |
| authorships[0].institutions[4].type | education |
| authorships[0].institutions[4].lineage | https://openalex.org/I130828816 |
| authorships[0].institutions[4].country_code | GB |
| authorships[0].institutions[4].display_name | University of Leeds |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Jakob Nikolas Kather |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | Department of Medicine III, University Hospital RWTH Aachen, Aachen, Germany, Medical Oncology, National Center for Tumor Diseases (NCT), University Hospital Heidelberg, Heidelberg, Germany, Pathology & Data Analytics, Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, UK |
| authorships[1].author.id | https://openalex.org/A5057475480 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-0889-3352 |
| authorships[1].author.display_name | Narmin Ghaffari Laleh |
| authorships[1].countries | DE |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I887968799 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Medicine III, University Hospital RWTH Aachen, Aachen, Germany |
| authorships[1].institutions[0].id | https://openalex.org/I887968799 |
| authorships[1].institutions[0].ror | https://ror.org/04xfq0f34 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I887968799 |
| authorships[1].institutions[0].country_code | DE |
| authorships[1].institutions[0].display_name | RWTH Aachen University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Narmin Ghaffari Laleh |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Medicine III, University Hospital RWTH Aachen, Aachen, Germany |
| authorships[2].author.id | https://openalex.org/A5073167797 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-4740-6900 |
| authorships[2].author.display_name | Sebastian Foersch |
| authorships[2].countries | DE |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I197323543, https://openalex.org/I4210094062 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Pathology, University Medical Center Mainz, Mainz, Germany |
| authorships[2].institutions[0].id | https://openalex.org/I197323543 |
| authorships[2].institutions[0].ror | https://ror.org/023b0x485 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I197323543 |
| authorships[2].institutions[0].country_code | DE |
| authorships[2].institutions[0].display_name | Johannes Gutenberg University Mainz |
| authorships[2].institutions[1].id | https://openalex.org/I4210094062 |
| authorships[2].institutions[1].ror | https://ror.org/00q1fsf04 |
| authorships[2].institutions[1].type | healthcare |
| authorships[2].institutions[1].lineage | https://openalex.org/I4210094062 |
| authorships[2].institutions[1].country_code | DE |
| authorships[2].institutions[1].display_name | University Medical Center of the Johannes Gutenberg University Mainz |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Sebastian Foersch |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Pathology, University Medical Center Mainz, Mainz, Germany |
| authorships[3].author.id | https://openalex.org/A5016512818 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-9605-0728 |
| authorships[3].author.display_name | Daniel Truhn |
| authorships[3].countries | DE |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I887968799 |
| authorships[3].affiliations[0].raw_affiliation_string | Department of Radiology, University Hospital RWTH Aachen, Aachen, Germany |
| authorships[3].institutions[0].id | https://openalex.org/I887968799 |
| authorships[3].institutions[0].ror | https://ror.org/04xfq0f34 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I887968799 |
| authorships[3].institutions[0].country_code | DE |
| authorships[3].institutions[0].display_name | RWTH Aachen University |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Daniel Truhn |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Department of Radiology, University Hospital RWTH Aachen, Aachen, Germany |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.medrxiv.org/content/medrxiv/early/2022/01/11/2022.01.10.22269025.full.pdf |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Medical domain knowledge in domain-agnostic generative AI |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10862 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9948999881744385 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | AI in cancer detection |
| related_works | https://openalex.org/W4365211920, https://openalex.org/W3014948380, https://openalex.org/W4380551139, https://openalex.org/W4317695495, https://openalex.org/W4287117424, https://openalex.org/W4387506531, https://openalex.org/W2087346071, https://openalex.org/W2967848559, https://openalex.org/W4299831724, https://openalex.org/W4283803360 |
| cited_by_count | 4 |
| counts_by_year[0].year | 2024 |
| counts_by_year[0].cited_by_count | 3 |
| counts_by_year[1].year | 2023 |
| counts_by_year[1].cited_by_count | 1 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1101/2022.01.10.22269025 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306402567 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | bioRxiv (Cold Spring Harbor Laboratory) |
| best_oa_location.source.host_organization | https://openalex.org/I2750212522 |
| best_oa_location.source.host_organization_name | Cold Spring Harbor Laboratory |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I2750212522 |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.medrxiv.org/content/medrxiv/early/2022/01/11/2022.01.10.22269025.full.pdf |
| best_oa_location.version | acceptedVersion |
| best_oa_location.raw_type | posted-content |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.1101/2022.01.10.22269025 |
| primary_location.id | doi:10.1101/2022.01.10.22269025 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306402567 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | bioRxiv (Cold Spring Harbor Laboratory) |
| primary_location.source.host_organization | https://openalex.org/I2750212522 |
| primary_location.source.host_organization_name | Cold Spring Harbor Laboratory |
| primary_location.source.host_organization_lineage | https://openalex.org/I2750212522 |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.medrxiv.org/content/medrxiv/early/2022/01/11/2022.01.10.22269025.full.pdf |
| primary_location.version | acceptedVersion |
| primary_location.raw_type | posted-content |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.1101/2022.01.10.22269025 |
| publication_date | 2022-01-11 |
| publication_year | 2022 |
| referenced_works | https://openalex.org/W3106805434, https://openalex.org/W3044753181, https://openalex.org/W3126398568, https://openalex.org/W3179252650, https://openalex.org/W3166254754, https://openalex.org/W3121997355, https://openalex.org/W3029272675, https://openalex.org/W3186141300 |
| referenced_works_count | 8 |
| abstract_inverted_index.- | 157 |
| abstract_inverted_index.a | 57, 68 |
| abstract_inverted_index.AI | 61, 131 |
| abstract_inverted_index.If | 42 |
| abstract_inverted_index.be | 50, 147 |
| abstract_inverted_index.in | 21, 59, 87, 92, 154 |
| abstract_inverted_index.is | 15 |
| abstract_inverted_index.it | 48 |
| abstract_inverted_index.of | 18, 34, 84, 97, 103, 117, 122 |
| abstract_inverted_index.to | 8, 113 |
| abstract_inverted_index.we | 72 |
| abstract_inverted_index.Our | 125 |
| abstract_inverted_index.The | 1 |
| abstract_inverted_index.and | 13, 90, 100, 107, 120, 143 |
| abstract_inverted_index.are | 63 |
| abstract_inverted_index.art | 20 |
| abstract_inverted_index.but | 31 |
| abstract_inverted_index.can | 133 |
| abstract_inverted_index.for | 11, 52, 149 |
| abstract_inverted_index.had | 44 |
| abstract_inverted_index.has | 28, 80 |
| abstract_inverted_index.key | 85 |
| abstract_inverted_index.not | 38 |
| abstract_inverted_index.the | 16, 19, 75, 94, 118, 155 |
| abstract_inverted_index.Here | 71 |
| abstract_inverted_index.been | 39 |
| abstract_inverted_index.have | 37 |
| abstract_inverted_index.lack | 114 |
| abstract_inverted_index.rich | 29 |
| abstract_inverted_index.show | 73 |
| abstract_inverted_index.that | 74, 128 |
| abstract_inverted_index.this | 35 |
| abstract_inverted_index.used | 51 |
| abstract_inverted_index.with | 159 |
| abstract_inverted_index.(AI). | 26 |
| abstract_inverted_index.GLIDE | 5, 27, 43, 78, 111, 142 |
| abstract_inverted_index.Image | 9 |
| abstract_inverted_index.Thus, | 141 |
| abstract_inverted_index.could | 49 |
| abstract_inverted_index.data. | 124 |
| abstract_inverted_index.image | 54, 151 |
| abstract_inverted_index.learn | 134 |
| abstract_inverted_index.might | 146 |
| abstract_inverted_index.model | 4, 36, 79 |
| abstract_inverted_index.seems | 112 |
| abstract_inverted_index.state | 17 |
| abstract_inverted_index.still | 64 |
| abstract_inverted_index.style | 96, 119 |
| abstract_inverted_index.tasks | 153 |
| abstract_inverted_index.which | 60 |
| abstract_inverted_index.cancer | 88 |
| abstract_inverted_index.domain | 58 |
| abstract_inverted_index.facets | 102 |
| abstract_inverted_index.future | 156 |
| abstract_inverted_index.highly | 65 |
| abstract_inverted_index.images | 99 |
| abstract_inverted_index.models | 132, 145 |
| abstract_inverted_index.single | 69 |
| abstract_inverted_index.strong | 82 |
| abstract_inverted_index.tasks, | 56 |
| abstract_inverted_index.topics | 86 |
| abstract_inverted_index.useful | 45, 115, 148 |
| abstract_inverted_index.(Guided | 6 |
| abstract_inverted_index.assays. | 109 |
| abstract_inverted_index.content | 121 |
| abstract_inverted_index.general | 95 |
| abstract_inverted_index.medical | 32, 46, 53, 136, 150 |
| abstract_inverted_index.similar | 144 |
| abstract_inverted_index.systems | 62 |
| abstract_inverted_index.towards | 67 |
| abstract_inverted_index.without | 138 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.Editing) | 14 |
| abstract_inverted_index.However, | 110 |
| abstract_inverted_index.Language | 7 |
| abstract_inverted_index.analysis | 55 |
| abstract_inverted_index.concepts | 137 |
| abstract_inverted_index.explicit | 139 |
| abstract_inverted_index.findings | 126 |
| abstract_inverted_index.multiple | 101 |
| abstract_inverted_index.publicly | 76 |
| abstract_inverted_index.relevant | 135 |
| abstract_inverted_index.research | 89 |
| abstract_inverted_index.Diffusion | 10 |
| abstract_inverted_index.available | 77 |
| abstract_inverted_index.diffusion | 3 |
| abstract_inverted_index.diseases, | 104 |
| abstract_inverted_index.explored. | 41 |
| abstract_inverted_index.oncology, | 91 |
| abstract_inverted_index.processes | 106 |
| abstract_inverted_index.radiology | 123 |
| abstract_inverted_index.training. | 140 |
| abstract_inverted_index.use-case. | 70 |
| abstract_inverted_index.Generation | 12 |
| abstract_inverted_index.additional | 160 |
| abstract_inverted_index.artificial | 24 |
| abstract_inverted_index.engineered | 66 |
| abstract_inverted_index.generative | 23, 130 |
| abstract_inverted_index.knowledge, | 47 |
| abstract_inverted_index.laboratory | 108 |
| abstract_inverted_index.particular | 93 |
| abstract_inverted_index.processing | 152 |
| abstract_inverted_index.reasonably | 81 |
| abstract_inverted_index.demonstrate | 127 |
| abstract_inverted_index.text-guided | 2 |
| abstract_inverted_index.applications | 33 |
| abstract_inverted_index.fine-tuning. | 162 |
| abstract_inverted_index.intelligence | 25 |
| abstract_inverted_index.particularly | 158 |
| abstract_inverted_index.pathological | 105 |
| abstract_inverted_index.text-to-image | 22 |
| abstract_inverted_index.histopathology | 98 |
| abstract_inverted_index.systematically | 40 |
| abstract_inverted_index.domain-agnostic | 129 |
| abstract_inverted_index.domain-specific | 161 |
| abstract_inverted_index.representations | 83, 116 |
| abstract_inverted_index.representations, | 30 |
| cited_by_percentile_year.max | 97 |
| cited_by_percentile_year.min | 89 |
| corresponding_author_ids | https://openalex.org/A5073483894 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 4 |
| corresponding_institution_ids | https://openalex.org/I130828816, https://openalex.org/I223822909, https://openalex.org/I2802164966, https://openalex.org/I4210111460, https://openalex.org/I887968799 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/4 |
| sustainable_development_goals[0].score | 0.550000011920929 |
| sustainable_development_goals[0].display_name | Quality Education |
| citation_normalized_percentile.value | 0.70704345 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |