Medical Image Segmentation Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.47392/irjaeh.2024.0353
Medical image segmentation is a critical component in the development of computer-aided diagnosis and treatment planning systems. This paper provides a comprehensive survey of recent advances in segmentation techniques applied to various imaging modalities, including Magnetic Resonance Imaging (MRI). Traditional methods such as thresholding, region-growing, and active contours are reviewed alongside contemporary machine learning-based approaches, particularly deep learning models. The survey emphasizes the growing dominance of convolutional neural networks (CNNs) and their variants, including U-Net and Fully Convolutional Networks (FCNs), which have shown remarkable success in handling complex medical imaging challenges. Additionally, the paper discusses hybrid methods that combine classical techniques with artificial intelligence to improve accuracy and robustness in segmentation tasks. Key challenges such as class imbalance, boundary delineation, and computational efficiency are also highlighted. Future directions, including the integration of multi-modal data and advancements in self-supervised learning, are explored as potential solutions to overcome current limitations in medical image segmentation.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.47392/irjaeh.2024.0353
- https://irjaeh.com/index.php/journal/article/download/416/378
- OA Status
- diamond
- Cited By
- 6
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4404417527
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4404417527Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.47392/irjaeh.2024.0353Digital Object Identifier
- Title
-
Medical Image SegmentationWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-11-15Full publication date if available
- Authors
-
Arpit Mohankar, Aishwarya Nagpure, Saad Shaikh, Khushi Singh, Faiq ShaikhList of authors in order
- Landing page
-
https://doi.org/10.47392/irjaeh.2024.0353Publisher landing page
- PDF URL
-
https://irjaeh.com/index.php/journal/article/download/416/378Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://irjaeh.com/index.php/journal/article/download/416/378Direct OA link when available
- Concepts
-
Artificial intelligence, Computer vision, Computer science, Image segmentation, Medicine, Image (mathematics)Top concepts (fields/topics) attached by OpenAlex
- Cited by
-
6Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1, 2020: 1, 2018: 1, 2014: 2Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4404417527 |
|---|---|
| doi | https://doi.org/10.47392/irjaeh.2024.0353 |
| ids.doi | https://doi.org/10.47392/irjaeh.2024.0353 |
| ids.openalex | https://openalex.org/W4404417527 |
| fwci | 0.51754831 |
| type | article |
| title | Medical Image Segmentation |
| biblio.issue | 11 |
| biblio.volume | 2 |
| biblio.last_page | 2574 |
| biblio.first_page | 2569 |
| topics[0].id | https://openalex.org/T12702 |
| topics[0].field.id | https://openalex.org/fields/28 |
| topics[0].field.display_name | Neuroscience |
| topics[0].score | 0.8777999877929688 |
| topics[0].domain.id | https://openalex.org/domains/1 |
| topics[0].domain.display_name | Life Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2808 |
| topics[0].subfield.display_name | Neurology |
| topics[0].display_name | Brain Tumor Detection and Classification |
| topics[1].id | https://openalex.org/T10052 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.7738000154495239 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1707 |
| topics[1].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[1].display_name | Medical Image Segmentation Techniques |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C154945302 |
| concepts[0].level | 1 |
| concepts[0].score | 0.5641345977783203 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[0].display_name | Artificial intelligence |
| concepts[1].id | https://openalex.org/C31972630 |
| concepts[1].level | 1 |
| concepts[1].score | 0.5131283402442932 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[1].display_name | Computer vision |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.46855100989341736 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C124504099 |
| concepts[3].level | 3 |
| concepts[3].score | 0.4176868796348572 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q56933 |
| concepts[3].display_name | Image segmentation |
| concepts[4].id | https://openalex.org/C71924100 |
| concepts[4].level | 0 |
| concepts[4].score | 0.3766034245491028 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[4].display_name | Medicine |
| concepts[5].id | https://openalex.org/C115961682 |
| concepts[5].level | 2 |
| concepts[5].score | 0.33527135848999023 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q860623 |
| concepts[5].display_name | Image (mathematics) |
| keywords[0].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[0].score | 0.5641345977783203 |
| keywords[0].display_name | Artificial intelligence |
| keywords[1].id | https://openalex.org/keywords/computer-vision |
| keywords[1].score | 0.5131283402442932 |
| keywords[1].display_name | Computer vision |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.46855100989341736 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/image-segmentation |
| keywords[3].score | 0.4176868796348572 |
| keywords[3].display_name | Image segmentation |
| keywords[4].id | https://openalex.org/keywords/medicine |
| keywords[4].score | 0.3766034245491028 |
| keywords[4].display_name | Medicine |
| keywords[5].id | https://openalex.org/keywords/image |
| keywords[5].score | 0.33527135848999023 |
| keywords[5].display_name | Image (mathematics) |
| language | en |
| locations[0].id | doi:10.47392/irjaeh.2024.0353 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S5407010578 |
| locations[0].source.issn | 2584-2137 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2584-2137 |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | International Research Journal on Advanced Engineering Hub (IRJAEH) |
| locations[0].source.host_organization | |
| locations[0].source.host_organization_name | |
| locations[0].license | cc-by-nc |
| locations[0].pdf_url | https://irjaeh.com/index.php/journal/article/download/416/378 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | International Research Journal on Advanced Engineering Hub (IRJAEH) |
| locations[0].landing_page_url | https://doi.org/10.47392/irjaeh.2024.0353 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5114661880 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Arpit Mohankar |
| authorships[0].affiliations[0].raw_affiliation_string | UG Scholar, Dept. of AI&DS, Rajiv Gandhi Institute of Tech., Mumbai, Maharashtra, India. |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | None Arpit Mohankar |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | UG Scholar, Dept. of AI&DS, Rajiv Gandhi Institute of Tech., Mumbai, Maharashtra, India. |
| authorships[1].author.id | https://openalex.org/A5114661881 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Aishwarya Nagpure |
| authorships[1].affiliations[0].raw_affiliation_string | UG Scholar, Dept. of AI&DS, Rajiv Gandhi Institute of Tech., Mumbai, Maharashtra, India. |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | None Aishwarya Nagpure |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | UG Scholar, Dept. of AI&DS, Rajiv Gandhi Institute of Tech., Mumbai, Maharashtra, India. |
| authorships[2].author.id | https://openalex.org/A5101519770 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-1924-7903 |
| authorships[2].author.display_name | Saad Shaikh |
| authorships[2].affiliations[0].raw_affiliation_string | UG Scholar, Dept. of AI&DS, Rajiv Gandhi Institute of Tech., Mumbai, Maharashtra, India. |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | None Sania Shaikh |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | UG Scholar, Dept. of AI&DS, Rajiv Gandhi Institute of Tech., Mumbai, Maharashtra, India. |
| authorships[3].author.id | https://openalex.org/A5109782971 |
| authorships[3].author.orcid | https://orcid.org/0009-0009-1098-9979 |
| authorships[3].author.display_name | Khushi Singh |
| authorships[3].affiliations[0].raw_affiliation_string | UG Scholar, Dept. of AI&DS, Rajiv Gandhi Institute of Tech., Mumbai, Maharashtra, India. |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | None Khushi Singh |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | UG Scholar, Dept. of AI&DS, Rajiv Gandhi Institute of Tech., Mumbai, Maharashtra, India. |
| authorships[4].author.id | https://openalex.org/A5018577308 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-4239-8638 |
| authorships[4].author.display_name | Faiq Shaikh |
| authorships[4].affiliations[0].raw_affiliation_string | Assistant Professor, Dept. of AI&DS, Rajiv Gandhi Institute of Tech., Mumbai, Maharashtra, India. |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | None Firdous Jahan Shaikh |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Assistant Professor, Dept. of AI&DS, Rajiv Gandhi Institute of Tech., Mumbai, Maharashtra, India. |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://irjaeh.com/index.php/journal/article/download/416/378 |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Medical Image Segmentation |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T12702 |
| primary_topic.field.id | https://openalex.org/fields/28 |
| primary_topic.field.display_name | Neuroscience |
| primary_topic.score | 0.8777999877929688 |
| primary_topic.domain.id | https://openalex.org/domains/1 |
| primary_topic.domain.display_name | Life Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2808 |
| primary_topic.subfield.display_name | Neurology |
| primary_topic.display_name | Brain Tumor Detection and Classification |
| related_works | https://openalex.org/W2772917594, https://openalex.org/W2036807459, https://openalex.org/W2058170566, https://openalex.org/W2755342338, https://openalex.org/W2166024367, https://openalex.org/W3116076068, https://openalex.org/W2229312674, https://openalex.org/W2951359407, https://openalex.org/W2079911747, https://openalex.org/W1969923398 |
| cited_by_count | 6 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2020 |
| counts_by_year[1].cited_by_count | 1 |
| counts_by_year[2].year | 2018 |
| counts_by_year[2].cited_by_count | 1 |
| counts_by_year[3].year | 2014 |
| counts_by_year[3].cited_by_count | 2 |
| locations_count | 1 |
| best_oa_location.id | doi:10.47392/irjaeh.2024.0353 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S5407010578 |
| best_oa_location.source.issn | 2584-2137 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2584-2137 |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | International Research Journal on Advanced Engineering Hub (IRJAEH) |
| best_oa_location.source.host_organization | |
| best_oa_location.source.host_organization_name | |
| best_oa_location.license | cc-by-nc |
| best_oa_location.pdf_url | https://irjaeh.com/index.php/journal/article/download/416/378 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | International Research Journal on Advanced Engineering Hub (IRJAEH) |
| best_oa_location.landing_page_url | https://doi.org/10.47392/irjaeh.2024.0353 |
| primary_location.id | doi:10.47392/irjaeh.2024.0353 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S5407010578 |
| primary_location.source.issn | 2584-2137 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2584-2137 |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | International Research Journal on Advanced Engineering Hub (IRJAEH) |
| primary_location.source.host_organization | |
| primary_location.source.host_organization_name | |
| primary_location.license | cc-by-nc |
| primary_location.pdf_url | https://irjaeh.com/index.php/journal/article/download/416/378 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | International Research Journal on Advanced Engineering Hub (IRJAEH) |
| primary_location.landing_page_url | https://doi.org/10.47392/irjaeh.2024.0353 |
| publication_date | 2024-11-15 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 4, 20 |
| abstract_inverted_index.as | 42, 115, 141 |
| abstract_inverted_index.in | 7, 26, 85, 109, 136, 148 |
| abstract_inverted_index.is | 3 |
| abstract_inverted_index.of | 10, 23, 65, 131 |
| abstract_inverted_index.to | 30, 104, 144 |
| abstract_inverted_index.Key | 112 |
| abstract_inverted_index.The | 59 |
| abstract_inverted_index.and | 13, 45, 70, 75, 107, 120, 134 |
| abstract_inverted_index.are | 48, 123, 139 |
| abstract_inverted_index.the | 8, 62, 92, 129 |
| abstract_inverted_index.This | 17 |
| abstract_inverted_index.also | 124 |
| abstract_inverted_index.data | 133 |
| abstract_inverted_index.deep | 56 |
| abstract_inverted_index.have | 81 |
| abstract_inverted_index.such | 41, 114 |
| abstract_inverted_index.that | 97 |
| abstract_inverted_index.with | 101 |
| abstract_inverted_index.Fully | 76 |
| abstract_inverted_index.U-Net | 74 |
| abstract_inverted_index.class | 116 |
| abstract_inverted_index.image | 1, 150 |
| abstract_inverted_index.paper | 18, 93 |
| abstract_inverted_index.shown | 82 |
| abstract_inverted_index.their | 71 |
| abstract_inverted_index.which | 80 |
| abstract_inverted_index.(CNNs) | 69 |
| abstract_inverted_index.(MRI). | 38 |
| abstract_inverted_index.Future | 126 |
| abstract_inverted_index.active | 46 |
| abstract_inverted_index.hybrid | 95 |
| abstract_inverted_index.neural | 67 |
| abstract_inverted_index.recent | 24 |
| abstract_inverted_index.survey | 22, 60 |
| abstract_inverted_index.tasks. | 111 |
| abstract_inverted_index.(FCNs), | 79 |
| abstract_inverted_index.Imaging | 37 |
| abstract_inverted_index.Medical | 0 |
| abstract_inverted_index.applied | 29 |
| abstract_inverted_index.combine | 98 |
| abstract_inverted_index.complex | 87 |
| abstract_inverted_index.current | 146 |
| abstract_inverted_index.growing | 63 |
| abstract_inverted_index.imaging | 32, 89 |
| abstract_inverted_index.improve | 105 |
| abstract_inverted_index.machine | 52 |
| abstract_inverted_index.medical | 88, 149 |
| abstract_inverted_index.methods | 40, 96 |
| abstract_inverted_index.models. | 58 |
| abstract_inverted_index.success | 84 |
| abstract_inverted_index.various | 31 |
| abstract_inverted_index.Magnetic | 35 |
| abstract_inverted_index.Networks | 78 |
| abstract_inverted_index.accuracy | 106 |
| abstract_inverted_index.advances | 25 |
| abstract_inverted_index.boundary | 118 |
| abstract_inverted_index.contours | 47 |
| abstract_inverted_index.critical | 5 |
| abstract_inverted_index.explored | 140 |
| abstract_inverted_index.handling | 86 |
| abstract_inverted_index.learning | 57 |
| abstract_inverted_index.networks | 68 |
| abstract_inverted_index.overcome | 145 |
| abstract_inverted_index.planning | 15 |
| abstract_inverted_index.provides | 19 |
| abstract_inverted_index.reviewed | 49 |
| abstract_inverted_index.systems. | 16 |
| abstract_inverted_index.Resonance | 36 |
| abstract_inverted_index.alongside | 50 |
| abstract_inverted_index.classical | 99 |
| abstract_inverted_index.component | 6 |
| abstract_inverted_index.diagnosis | 12 |
| abstract_inverted_index.discusses | 94 |
| abstract_inverted_index.dominance | 64 |
| abstract_inverted_index.including | 34, 73, 128 |
| abstract_inverted_index.learning, | 138 |
| abstract_inverted_index.potential | 142 |
| abstract_inverted_index.solutions | 143 |
| abstract_inverted_index.treatment | 14 |
| abstract_inverted_index.variants, | 72 |
| abstract_inverted_index.artificial | 102 |
| abstract_inverted_index.challenges | 113 |
| abstract_inverted_index.efficiency | 122 |
| abstract_inverted_index.emphasizes | 61 |
| abstract_inverted_index.imbalance, | 117 |
| abstract_inverted_index.remarkable | 83 |
| abstract_inverted_index.robustness | 108 |
| abstract_inverted_index.techniques | 28, 100 |
| abstract_inverted_index.Traditional | 39 |
| abstract_inverted_index.approaches, | 54 |
| abstract_inverted_index.challenges. | 90 |
| abstract_inverted_index.development | 9 |
| abstract_inverted_index.directions, | 127 |
| abstract_inverted_index.integration | 130 |
| abstract_inverted_index.limitations | 147 |
| abstract_inverted_index.modalities, | 33 |
| abstract_inverted_index.multi-modal | 132 |
| abstract_inverted_index.advancements | 135 |
| abstract_inverted_index.contemporary | 51 |
| abstract_inverted_index.delineation, | 119 |
| abstract_inverted_index.highlighted. | 125 |
| abstract_inverted_index.intelligence | 103 |
| abstract_inverted_index.particularly | 55 |
| abstract_inverted_index.segmentation | 2, 27, 110 |
| abstract_inverted_index.Additionally, | 91 |
| abstract_inverted_index.Convolutional | 77 |
| abstract_inverted_index.comprehensive | 21 |
| abstract_inverted_index.computational | 121 |
| abstract_inverted_index.convolutional | 66 |
| abstract_inverted_index.segmentation. | 151 |
| abstract_inverted_index.thresholding, | 43 |
| abstract_inverted_index.computer-aided | 11 |
| abstract_inverted_index.learning-based | 53 |
| abstract_inverted_index.region-growing, | 44 |
| abstract_inverted_index.self-supervised | 137 |
| cited_by_percentile_year.max | 96 |
| cited_by_percentile_year.min | 89 |
| countries_distinct_count | 0 |
| institutions_distinct_count | 5 |
| citation_normalized_percentile.value | 0.63882628 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |