MedMMV: A Controllable Multimodal Multi-Agent Framework for Reliable and Verifiable Clinical Reasoning Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2509.24314
Recent progress in multimodal large language models (MLLMs) has demonstrated promising performance on medical benchmarks and in preliminary trials as clinical assistants. Yet, our pilot audit of diagnostic cases uncovers a critical failure mode: instability in early evidence interpretation precedes hallucination, creating branching reasoning trajectories that cascade into globally inconsistent conclusions. This highlights the need for clinical reasoning agents that constrain stochasticity and hallucination while producing auditable decision flows. We introduce MedMMV, a controllable multimodal multi-agent framework for reliable and verifiable clinical reasoning. MedMMV stabilizes reasoning through diversified short rollouts, grounds intermediate steps in a structured evidence graph under the supervision of a Hallucination Detector, and aggregates candidate paths with a Combined Uncertainty scorer. On six medical benchmarks, MedMMV improves accuracy by up to 12.7% and, more critically, demonstrates superior reliability. Blind physician evaluations confirm that MedMMV substantially increases reasoning truthfulness without sacrificing informational content. By controlling instability through a verifiable, multi-agent process, our framework provides a robust path toward deploying trustworthy AI systems in high-stakes domains like clinical decision support.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2509.24314
- https://arxiv.org/pdf/2509.24314
- OA Status
- green
- OpenAlex ID
- https://openalex.org/W4415336526
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4415336526Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2509.24314Digital Object Identifier
- Title
-
MedMMV: A Controllable Multimodal Multi-Agent Framework for Reliable and Verifiable Clinical ReasoningWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-09-29Full publication date if available
- Authors
-
Hongjun Liu, Yinghao Zhu, Yuhui Wang, Yi‐Tao Long, Zeyu Lai, Lequan Yu, Zhao ChenList of authors in order
- Landing page
-
https://arxiv.org/abs/2509.24314Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2509.24314Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2509.24314Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W4415336526 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2509.24314 |
| ids.doi | https://doi.org/10.48550/arxiv.2509.24314 |
| ids.openalex | https://openalex.org/W4415336526 |
| fwci | |
| type | preprint |
| title | MedMMV: A Controllable Multimodal Multi-Agent Framework for Reliable and Verifiable Clinical Reasoning |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10456 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9370999932289124 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Multi-Agent Systems and Negotiation |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2509.24314 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2509.24314 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2509.24314 |
| locations[1].id | doi:10.48550/arxiv.2509.24314 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2509.24314 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5024796902 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-9093-7344 |
| authorships[0].author.display_name | Hongjun Liu |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Liu, Hongjun |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5068253534 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-2640-6477 |
| authorships[1].author.display_name | Yinghao Zhu |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Zhu, Yinghao |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5017431052 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-9805-2583 |
| authorships[2].author.display_name | Yuhui Wang |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Wang, Yuhui |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5034885015 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-2571-7457 |
| authorships[3].author.display_name | Yi‐Tao Long |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Long, Yitao |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5102611083 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Zeyu Lai |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Lai, Zeyu |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5012581106 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-9315-6527 |
| authorships[5].author.display_name | Lequan Yu |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Yu, Lequan |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5100352002 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-5782-3329 |
| authorships[6].author.display_name | Zhao Chen |
| authorships[6].author_position | last |
| authorships[6].raw_author_name | Zhao, Chen |
| authorships[6].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2509.24314 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-19T00:00:00 |
| display_name | MedMMV: A Controllable Multimodal Multi-Agent Framework for Reliable and Verifiable Clinical Reasoning |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10456 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9370999932289124 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Multi-Agent Systems and Negotiation |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2509.24314 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2509.24314 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2509.24314 |
| primary_location.id | pmh:oai:arXiv.org:2509.24314 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2509.24314 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2509.24314 |
| publication_date | 2025-09-29 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 30, 72, 94, 102, 110, 149, 156 |
| abstract_inverted_index.AI | 162 |
| abstract_inverted_index.By | 145 |
| abstract_inverted_index.On | 114 |
| abstract_inverted_index.We | 69 |
| abstract_inverted_index.as | 19 |
| abstract_inverted_index.by | 121 |
| abstract_inverted_index.in | 2, 16, 35, 93, 164 |
| abstract_inverted_index.of | 26, 101 |
| abstract_inverted_index.on | 12 |
| abstract_inverted_index.to | 123 |
| abstract_inverted_index.up | 122 |
| abstract_inverted_index.and | 15, 62, 79, 105 |
| abstract_inverted_index.for | 55, 77 |
| abstract_inverted_index.has | 8 |
| abstract_inverted_index.our | 23, 153 |
| abstract_inverted_index.six | 115 |
| abstract_inverted_index.the | 53, 99 |
| abstract_inverted_index.This | 51 |
| abstract_inverted_index.Yet, | 22 |
| abstract_inverted_index.and, | 125 |
| abstract_inverted_index.into | 47 |
| abstract_inverted_index.like | 167 |
| abstract_inverted_index.more | 126 |
| abstract_inverted_index.need | 54 |
| abstract_inverted_index.path | 158 |
| abstract_inverted_index.that | 45, 59, 135 |
| abstract_inverted_index.with | 109 |
| abstract_inverted_index.12.7% | 124 |
| abstract_inverted_index.Blind | 131 |
| abstract_inverted_index.audit | 25 |
| abstract_inverted_index.cases | 28 |
| abstract_inverted_index.early | 36 |
| abstract_inverted_index.graph | 97 |
| abstract_inverted_index.large | 4 |
| abstract_inverted_index.mode: | 33 |
| abstract_inverted_index.paths | 108 |
| abstract_inverted_index.pilot | 24 |
| abstract_inverted_index.short | 88 |
| abstract_inverted_index.steps | 92 |
| abstract_inverted_index.under | 98 |
| abstract_inverted_index.while | 64 |
| abstract_inverted_index.MedMMV | 83, 118, 136 |
| abstract_inverted_index.Recent | 0 |
| abstract_inverted_index.agents | 58 |
| abstract_inverted_index.flows. | 68 |
| abstract_inverted_index.models | 6 |
| abstract_inverted_index.robust | 157 |
| abstract_inverted_index.toward | 159 |
| abstract_inverted_index.trials | 18 |
| abstract_inverted_index.(MLLMs) | 7 |
| abstract_inverted_index.MedMMV, | 71 |
| abstract_inverted_index.cascade | 46 |
| abstract_inverted_index.confirm | 134 |
| abstract_inverted_index.domains | 166 |
| abstract_inverted_index.failure | 32 |
| abstract_inverted_index.grounds | 90 |
| abstract_inverted_index.medical | 13, 116 |
| abstract_inverted_index.scorer. | 113 |
| abstract_inverted_index.systems | 163 |
| abstract_inverted_index.through | 86, 148 |
| abstract_inverted_index.without | 141 |
| abstract_inverted_index.Combined | 111 |
| abstract_inverted_index.accuracy | 120 |
| abstract_inverted_index.clinical | 20, 56, 81, 168 |
| abstract_inverted_index.content. | 144 |
| abstract_inverted_index.creating | 41 |
| abstract_inverted_index.critical | 31 |
| abstract_inverted_index.decision | 67, 169 |
| abstract_inverted_index.evidence | 37, 96 |
| abstract_inverted_index.globally | 48 |
| abstract_inverted_index.improves | 119 |
| abstract_inverted_index.language | 5 |
| abstract_inverted_index.precedes | 39 |
| abstract_inverted_index.process, | 152 |
| abstract_inverted_index.progress | 1 |
| abstract_inverted_index.provides | 155 |
| abstract_inverted_index.reliable | 78 |
| abstract_inverted_index.superior | 129 |
| abstract_inverted_index.support. | 170 |
| abstract_inverted_index.uncovers | 29 |
| abstract_inverted_index.Detector, | 104 |
| abstract_inverted_index.auditable | 66 |
| abstract_inverted_index.branching | 42 |
| abstract_inverted_index.candidate | 107 |
| abstract_inverted_index.constrain | 60 |
| abstract_inverted_index.deploying | 160 |
| abstract_inverted_index.framework | 76, 154 |
| abstract_inverted_index.increases | 138 |
| abstract_inverted_index.introduce | 70 |
| abstract_inverted_index.physician | 132 |
| abstract_inverted_index.producing | 65 |
| abstract_inverted_index.promising | 10 |
| abstract_inverted_index.reasoning | 43, 57, 85, 139 |
| abstract_inverted_index.rollouts, | 89 |
| abstract_inverted_index.aggregates | 106 |
| abstract_inverted_index.benchmarks | 14 |
| abstract_inverted_index.diagnostic | 27 |
| abstract_inverted_index.highlights | 52 |
| abstract_inverted_index.multimodal | 3, 74 |
| abstract_inverted_index.reasoning. | 82 |
| abstract_inverted_index.stabilizes | 84 |
| abstract_inverted_index.structured | 95 |
| abstract_inverted_index.verifiable | 80 |
| abstract_inverted_index.Uncertainty | 112 |
| abstract_inverted_index.assistants. | 21 |
| abstract_inverted_index.benchmarks, | 117 |
| abstract_inverted_index.controlling | 146 |
| abstract_inverted_index.critically, | 127 |
| abstract_inverted_index.diversified | 87 |
| abstract_inverted_index.evaluations | 133 |
| abstract_inverted_index.high-stakes | 165 |
| abstract_inverted_index.instability | 34, 147 |
| abstract_inverted_index.multi-agent | 75, 151 |
| abstract_inverted_index.performance | 11 |
| abstract_inverted_index.preliminary | 17 |
| abstract_inverted_index.sacrificing | 142 |
| abstract_inverted_index.supervision | 100 |
| abstract_inverted_index.trustworthy | 161 |
| abstract_inverted_index.verifiable, | 150 |
| abstract_inverted_index.conclusions. | 50 |
| abstract_inverted_index.controllable | 73 |
| abstract_inverted_index.demonstrated | 9 |
| abstract_inverted_index.demonstrates | 128 |
| abstract_inverted_index.inconsistent | 49 |
| abstract_inverted_index.intermediate | 91 |
| abstract_inverted_index.reliability. | 130 |
| abstract_inverted_index.trajectories | 44 |
| abstract_inverted_index.truthfulness | 140 |
| abstract_inverted_index.Hallucination | 103 |
| abstract_inverted_index.hallucination | 63 |
| abstract_inverted_index.informational | 143 |
| abstract_inverted_index.stochasticity | 61 |
| abstract_inverted_index.substantially | 137 |
| abstract_inverted_index.hallucination, | 40 |
| abstract_inverted_index.interpretation | 38 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 7 |
| citation_normalized_percentile |