MedSAM and Generative AI for segmenting gleason pattern in digital pathology slides of prostate cancer Article Swipe
Xinwei Song
,
S. Vats
,
Anne Breggia
,
Bilal Ahmad
,
Robert Christman
,
S. T.
,
Saeed Amal
·
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.22541/au.175039400.09206911/v1
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.22541/au.175039400.09206911/v1
Related Topics
Concepts
Metadata
- Type
- preprint
- Language
- en
- Landing Page
- https://doi.org/10.22541/au.175039400.09206911/v1
- https://www.authorea.com/doi/pdf/10.22541/au.175039400.09206911/v1
- OA Status
- gold
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4411501583
All OpenAlex metadata
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4411501583Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.22541/au.175039400.09206911/v1Digital Object Identifier
- Title
-
MedSAM and Generative AI for segmenting gleason pattern in digital pathology slides of prostate cancerWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-06-20Full publication date if available
- Authors
-
Xinwei Song, S. Vats, Anne Breggia, Bilal Ahmad, Robert Christman, S. T., Saeed AmalList of authors in order
- Landing page
-
https://doi.org/10.22541/au.175039400.09206911/v1Publisher landing page
- PDF URL
-
https://www.authorea.com/doi/pdf/10.22541/au.175039400.09206911/v1Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.authorea.com/doi/pdf/10.22541/au.175039400.09206911/v1Direct OA link when available
- Concepts
-
Prostate cancer, Prostate, Market segmentation, Generative grammar, Digital pathology, Cancer, Pathology, Medicine, Artificial intelligence, Computer science, Internal medicine, Marketing, BusinessTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4411501583 |
|---|---|
| doi | https://doi.org/10.22541/au.175039400.09206911/v1 |
| ids.doi | https://doi.org/10.22541/au.175039400.09206911/v1 |
| ids.openalex | https://openalex.org/W4411501583 |
| fwci | 0.0 |
| type | preprint |
| title | MedSAM and Generative AI for segmenting gleason pattern in digital pathology slides of prostate cancer |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10862 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9810000061988831 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | AI in cancer detection |
| topics[1].id | https://openalex.org/T12422 |
| topics[1].field.id | https://openalex.org/fields/27 |
| topics[1].field.display_name | Medicine |
| topics[1].score | 0.9107999801635742 |
| topics[1].domain.id | https://openalex.org/domains/4 |
| topics[1].domain.display_name | Health Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2741 |
| topics[1].subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| topics[1].display_name | Radiomics and Machine Learning in Medical Imaging |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C2780192828 |
| concepts[0].level | 3 |
| concepts[0].score | 0.7126186490058899 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q181257 |
| concepts[0].display_name | Prostate cancer |
| concepts[1].id | https://openalex.org/C2776235491 |
| concepts[1].level | 3 |
| concepts[1].score | 0.563532292842865 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q9625 |
| concepts[1].display_name | Prostate |
| concepts[2].id | https://openalex.org/C125308379 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5279618501663208 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q363057 |
| concepts[2].display_name | Market segmentation |
| concepts[3].id | https://openalex.org/C39890363 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5111823678016663 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q36108 |
| concepts[3].display_name | Generative grammar |
| concepts[4].id | https://openalex.org/C2777522853 |
| concepts[4].level | 2 |
| concepts[4].score | 0.49962592124938965 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q5276128 |
| concepts[4].display_name | Digital pathology |
| concepts[5].id | https://openalex.org/C121608353 |
| concepts[5].level | 2 |
| concepts[5].score | 0.4815938174724579 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q12078 |
| concepts[5].display_name | Cancer |
| concepts[6].id | https://openalex.org/C142724271 |
| concepts[6].level | 1 |
| concepts[6].score | 0.45329540967941284 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q7208 |
| concepts[6].display_name | Pathology |
| concepts[7].id | https://openalex.org/C71924100 |
| concepts[7].level | 0 |
| concepts[7].score | 0.4436969459056854 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[7].display_name | Medicine |
| concepts[8].id | https://openalex.org/C154945302 |
| concepts[8].level | 1 |
| concepts[8].score | 0.35027098655700684 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[8].display_name | Artificial intelligence |
| concepts[9].id | https://openalex.org/C41008148 |
| concepts[9].level | 0 |
| concepts[9].score | 0.2647913098335266 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[9].display_name | Computer science |
| concepts[10].id | https://openalex.org/C126322002 |
| concepts[10].level | 1 |
| concepts[10].score | 0.1211845874786377 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q11180 |
| concepts[10].display_name | Internal medicine |
| concepts[11].id | https://openalex.org/C162853370 |
| concepts[11].level | 1 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q39809 |
| concepts[11].display_name | Marketing |
| concepts[12].id | https://openalex.org/C144133560 |
| concepts[12].level | 0 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q4830453 |
| concepts[12].display_name | Business |
| keywords[0].id | https://openalex.org/keywords/prostate-cancer |
| keywords[0].score | 0.7126186490058899 |
| keywords[0].display_name | Prostate cancer |
| keywords[1].id | https://openalex.org/keywords/prostate |
| keywords[1].score | 0.563532292842865 |
| keywords[1].display_name | Prostate |
| keywords[2].id | https://openalex.org/keywords/market-segmentation |
| keywords[2].score | 0.5279618501663208 |
| keywords[2].display_name | Market segmentation |
| keywords[3].id | https://openalex.org/keywords/generative-grammar |
| keywords[3].score | 0.5111823678016663 |
| keywords[3].display_name | Generative grammar |
| keywords[4].id | https://openalex.org/keywords/digital-pathology |
| keywords[4].score | 0.49962592124938965 |
| keywords[4].display_name | Digital pathology |
| keywords[5].id | https://openalex.org/keywords/cancer |
| keywords[5].score | 0.4815938174724579 |
| keywords[5].display_name | Cancer |
| keywords[6].id | https://openalex.org/keywords/pathology |
| keywords[6].score | 0.45329540967941284 |
| keywords[6].display_name | Pathology |
| keywords[7].id | https://openalex.org/keywords/medicine |
| keywords[7].score | 0.4436969459056854 |
| keywords[7].display_name | Medicine |
| keywords[8].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[8].score | 0.35027098655700684 |
| keywords[8].display_name | Artificial intelligence |
| keywords[9].id | https://openalex.org/keywords/computer-science |
| keywords[9].score | 0.2647913098335266 |
| keywords[9].display_name | Computer science |
| keywords[10].id | https://openalex.org/keywords/internal-medicine |
| keywords[10].score | 0.1211845874786377 |
| keywords[10].display_name | Internal medicine |
| language | en |
| locations[0].id | doi:10.22541/au.175039400.09206911/v1 |
| locations[0].is_oa | True |
| locations[0].source | |
| locations[0].license | |
| locations[0].pdf_url | https://www.authorea.com/doi/pdf/10.22541/au.175039400.09206911/v1 |
| locations[0].version | acceptedVersion |
| locations[0].raw_type | posted-content |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.22541/au.175039400.09206911/v1 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5072166198 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Xinwei Song |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I12912129 |
| authorships[0].affiliations[0].raw_affiliation_string | Northeastern University Khoury College of Computer Sciences |
| authorships[0].institutions[0].id | https://openalex.org/I12912129 |
| authorships[0].institutions[0].ror | https://ror.org/04t5xt781 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I12912129 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | Northeastern University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Xinwei Song |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Northeastern University Khoury College of Computer Sciences |
| authorships[1].author.id | https://openalex.org/A5109730400 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | S. Vats |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I12912129 |
| authorships[1].affiliations[0].raw_affiliation_string | Northeastern University Khoury College of Computer Sciences |
| authorships[1].institutions[0].id | https://openalex.org/I12912129 |
| authorships[1].institutions[0].ror | https://ror.org/04t5xt781 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I12912129 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | Northeastern University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Saanidhya Vats |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Northeastern University Khoury College of Computer Sciences |
| authorships[2].author.id | https://openalex.org/A5074831109 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-7545-0303 |
| authorships[2].author.display_name | Anne Breggia |
| authorships[2].countries | US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I4210102705 |
| authorships[2].affiliations[0].raw_affiliation_string | MaineHealth |
| authorships[2].institutions[0].id | https://openalex.org/I4210102705 |
| authorships[2].institutions[0].ror | https://ror.org/017xncd55 |
| authorships[2].institutions[0].type | healthcare |
| authorships[2].institutions[0].lineage | https://openalex.org/I4210102705 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | MaineHealth |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Anne Breggia |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | MaineHealth |
| authorships[3].author.id | https://openalex.org/A5100715166 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-0244-8189 |
| authorships[3].author.display_name | Bilal Ahmad |
| authorships[3].countries | US |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I4210102705 |
| authorships[3].affiliations[0].raw_affiliation_string | MaineHealth |
| authorships[3].institutions[0].id | https://openalex.org/I4210102705 |
| authorships[3].institutions[0].ror | https://ror.org/017xncd55 |
| authorships[3].institutions[0].type | healthcare |
| authorships[3].institutions[0].lineage | https://openalex.org/I4210102705 |
| authorships[3].institutions[0].country_code | US |
| authorships[3].institutions[0].display_name | MaineHealth |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Bilal Ahmad |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | MaineHealth |
| authorships[4].author.id | https://openalex.org/A5018959845 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Robert Christman |
| authorships[4].countries | US |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I4210102705 |
| authorships[4].affiliations[0].raw_affiliation_string | MaineHealth |
| authorships[4].institutions[0].id | https://openalex.org/I4210102705 |
| authorships[4].institutions[0].ror | https://ror.org/017xncd55 |
| authorships[4].institutions[0].type | healthcare |
| authorships[4].institutions[0].lineage | https://openalex.org/I4210102705 |
| authorships[4].institutions[0].country_code | US |
| authorships[4].institutions[0].display_name | MaineHealth |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Robert Christman |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | MaineHealth |
| authorships[5].author.id | https://openalex.org/A5113168938 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-6548-7396 |
| authorships[5].author.display_name | S. T. |
| authorships[5].countries | US |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I4210102705 |
| authorships[5].affiliations[0].raw_affiliation_string | MaineHealth |
| authorships[5].institutions[0].id | https://openalex.org/I4210102705 |
| authorships[5].institutions[0].ror | https://ror.org/017xncd55 |
| authorships[5].institutions[0].type | healthcare |
| authorships[5].institutions[0].lineage | https://openalex.org/I4210102705 |
| authorships[5].institutions[0].country_code | US |
| authorships[5].institutions[0].display_name | MaineHealth |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Stephen Ryan T |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | MaineHealth |
| authorships[6].author.id | https://openalex.org/A5068985375 |
| authorships[6].author.orcid | https://orcid.org/0000-0001-8703-6986 |
| authorships[6].author.display_name | Saeed Amal |
| authorships[6].affiliations[0].raw_affiliation_string | Northeastern University - Portland Campus |
| authorships[6].author_position | last |
| authorships[6].raw_author_name | Saeed Amal |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | Northeastern University - Portland Campus |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.authorea.com/doi/pdf/10.22541/au.175039400.09206911/v1 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | MedSAM and Generative AI for segmenting gleason pattern in digital pathology slides of prostate cancer |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10862 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9810000061988831 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | AI in cancer detection |
| related_works | https://openalex.org/W2380075625, https://openalex.org/W1975767702, https://openalex.org/W299695548, https://openalex.org/W3128797991, https://openalex.org/W4390718435, https://openalex.org/W3015759778, https://openalex.org/W2088520467, https://openalex.org/W2075763133, https://openalex.org/W2376423713, https://openalex.org/W1583600832 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.22541/au.175039400.09206911/v1 |
| best_oa_location.is_oa | True |
| best_oa_location.source | |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://www.authorea.com/doi/pdf/10.22541/au.175039400.09206911/v1 |
| best_oa_location.version | acceptedVersion |
| best_oa_location.raw_type | posted-content |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.22541/au.175039400.09206911/v1 |
| primary_location.id | doi:10.22541/au.175039400.09206911/v1 |
| primary_location.is_oa | True |
| primary_location.source | |
| primary_location.license | |
| primary_location.pdf_url | https://www.authorea.com/doi/pdf/10.22541/au.175039400.09206911/v1 |
| primary_location.version | acceptedVersion |
| primary_location.raw_type | posted-content |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.22541/au.175039400.09206911/v1 |
| publication_date | 2025-06-20 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index | |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 7 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/2 |
| sustainable_development_goals[0].score | 0.5400000214576721 |
| sustainable_development_goals[0].display_name | Zero hunger |
| citation_normalized_percentile.value | 0.10444778 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |