Medtronic Percept™Recorded LFP Pre-Processing to Remove Noise and Cardiac Signals From Neural Recordings Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1101/2025.03.17.25324121
Chronic brain sensing devices, such as the Medtronic Percept™ or Neuropace RNS system, record local field potentials (LFPs) that may be vulnerable to noise from hardware limitations, environmental factors, movement, stimulation, cardiac signals, and analytical procedures. Although onboard hardware filters can attenuate some noise, additional processing is often required. Here we demonstrate that cardiac artifacts significantly alter the power spectral density (PSD) of neural activity within the theta (4– 8 Hz), alpha (8–12 Hz), and beta (12–30 Hz) bands. We introduce a time-domain template subtraction method specifically designed to remove QRS complex cardiac artifacts. Separately, we describe techniques for transforming time domain data to the frequency domain and mitigating transient artifacts by estimating background neural activity—either through window rejection based on PSD characteristics or via principal component analysis. Finally, we present an approach to isolate oscillatory neural activity by subtracting the aperiodic 1/f component from the power spectrum by fitting the FOOOF logarithmic function. While filter selection must be tailored to the specific device and participant environment to avoid over-filtering, these noise mitigation strategies are crucial for ensuring the integrity of LFP recordings.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- https://doi.org/10.1101/2025.03.17.25324121
- https://www.medrxiv.org/content/medrxiv/early/2025/03/18/2025.03.17.25324121.full.pdf
- OA Status
- green
- Cited By
- 3
- References
- 14
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4408673154
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4408673154Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1101/2025.03.17.25324121Digital Object Identifier
- Title
-
Medtronic Percept™Recorded LFP Pre-Processing to Remove Noise and Cardiac Signals From Neural RecordingsWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-03-18Full publication date if available
- Authors
-
Zachary Sanger, Steffen Ventz, Robert A. McGovern, Théoden I. NetoffList of authors in order
- Landing page
-
https://doi.org/10.1101/2025.03.17.25324121Publisher landing page
- PDF URL
-
https://www.medrxiv.org/content/medrxiv/early/2025/03/18/2025.03.17.25324121.full.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://www.medrxiv.org/content/medrxiv/early/2025/03/18/2025.03.17.25324121.full.pdfDirect OA link when available
- Concepts
-
Percept, Noise (video), Computer science, Speech recognition, Artificial neural network, Artificial intelligence, Neuroscience, Psychology, Perception, Image (mathematics)Top concepts (fields/topics) attached by OpenAlex
- Cited by
-
3Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 3Per-year citation counts (last 5 years)
- References (count)
-
14Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4408673154 |
|---|---|
| doi | https://doi.org/10.1101/2025.03.17.25324121 |
| ids.doi | https://doi.org/10.1101/2025.03.17.25324121 |
| ids.openalex | https://openalex.org/W4408673154 |
| fwci | 14.6694238 |
| type | preprint |
| title | Medtronic Percept™Recorded LFP Pre-Processing to Remove Noise and Cardiac Signals From Neural Recordings |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T12419 |
| topics[0].field.id | https://openalex.org/fields/27 |
| topics[0].field.display_name | Medicine |
| topics[0].score | 0.8981999754905701 |
| topics[0].domain.id | https://openalex.org/domains/4 |
| topics[0].domain.display_name | Health Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2740 |
| topics[0].subfield.display_name | Pulmonary and Respiratory Medicine |
| topics[0].display_name | Phonocardiography and Auscultation Techniques |
| topics[1].id | https://openalex.org/T11021 |
| topics[1].field.id | https://openalex.org/fields/27 |
| topics[1].field.display_name | Medicine |
| topics[1].score | 0.8776999711990356 |
| topics[1].domain.id | https://openalex.org/domains/4 |
| topics[1].domain.display_name | Health Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2705 |
| topics[1].subfield.display_name | Cardiology and Cardiovascular Medicine |
| topics[1].display_name | ECG Monitoring and Analysis |
| topics[2].id | https://openalex.org/T10429 |
| topics[2].field.id | https://openalex.org/fields/28 |
| topics[2].field.display_name | Neuroscience |
| topics[2].score | 0.767300009727478 |
| topics[2].domain.id | https://openalex.org/domains/1 |
| topics[2].domain.display_name | Life Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2805 |
| topics[2].subfield.display_name | Cognitive Neuroscience |
| topics[2].display_name | EEG and Brain-Computer Interfaces |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C2779687425 |
| concepts[0].level | 3 |
| concepts[0].score | 0.7222163677215576 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q7166998 |
| concepts[0].display_name | Percept |
| concepts[1].id | https://openalex.org/C99498987 |
| concepts[1].level | 3 |
| concepts[1].score | 0.5726950168609619 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q2210247 |
| concepts[1].display_name | Noise (video) |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.4673975110054016 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C28490314 |
| concepts[3].level | 1 |
| concepts[3].score | 0.4486097991466522 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q189436 |
| concepts[3].display_name | Speech recognition |
| concepts[4].id | https://openalex.org/C50644808 |
| concepts[4].level | 2 |
| concepts[4].score | 0.4119393229484558 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[4].display_name | Artificial neural network |
| concepts[5].id | https://openalex.org/C154945302 |
| concepts[5].level | 1 |
| concepts[5].score | 0.3358958959579468 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[5].display_name | Artificial intelligence |
| concepts[6].id | https://openalex.org/C169760540 |
| concepts[6].level | 1 |
| concepts[6].score | 0.2980618178844452 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q207011 |
| concepts[6].display_name | Neuroscience |
| concepts[7].id | https://openalex.org/C15744967 |
| concepts[7].level | 0 |
| concepts[7].score | 0.19785144925117493 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q9418 |
| concepts[7].display_name | Psychology |
| concepts[8].id | https://openalex.org/C26760741 |
| concepts[8].level | 2 |
| concepts[8].score | 0.04511651396751404 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q160402 |
| concepts[8].display_name | Perception |
| concepts[9].id | https://openalex.org/C115961682 |
| concepts[9].level | 2 |
| concepts[9].score | 0.0 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q860623 |
| concepts[9].display_name | Image (mathematics) |
| keywords[0].id | https://openalex.org/keywords/percept |
| keywords[0].score | 0.7222163677215576 |
| keywords[0].display_name | Percept |
| keywords[1].id | https://openalex.org/keywords/noise |
| keywords[1].score | 0.5726950168609619 |
| keywords[1].display_name | Noise (video) |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.4673975110054016 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/speech-recognition |
| keywords[3].score | 0.4486097991466522 |
| keywords[3].display_name | Speech recognition |
| keywords[4].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[4].score | 0.4119393229484558 |
| keywords[4].display_name | Artificial neural network |
| keywords[5].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[5].score | 0.3358958959579468 |
| keywords[5].display_name | Artificial intelligence |
| keywords[6].id | https://openalex.org/keywords/neuroscience |
| keywords[6].score | 0.2980618178844452 |
| keywords[6].display_name | Neuroscience |
| keywords[7].id | https://openalex.org/keywords/psychology |
| keywords[7].score | 0.19785144925117493 |
| keywords[7].display_name | Psychology |
| keywords[8].id | https://openalex.org/keywords/perception |
| keywords[8].score | 0.04511651396751404 |
| keywords[8].display_name | Perception |
| language | en |
| locations[0].id | doi:10.1101/2025.03.17.25324121 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306402567 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | bioRxiv (Cold Spring Harbor Laboratory) |
| locations[0].source.host_organization | https://openalex.org/I2750212522 |
| locations[0].source.host_organization_name | Cold Spring Harbor Laboratory |
| locations[0].source.host_organization_lineage | https://openalex.org/I2750212522 |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.medrxiv.org/content/medrxiv/early/2025/03/18/2025.03.17.25324121.full.pdf |
| locations[0].version | acceptedVersion |
| locations[0].raw_type | posted-content |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.1101/2025.03.17.25324121 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5076629830 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-2144-1895 |
| authorships[0].author.display_name | Zachary Sanger |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Zachary T Sanger |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5084581258 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-2229-9560 |
| authorships[1].author.display_name | Steffen Ventz |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Steffen Ventz |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5026187356 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-0752-1899 |
| authorships[2].author.display_name | Robert A. McGovern |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Robert A McGovern |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5043792029 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-0115-1930 |
| authorships[3].author.display_name | Théoden I. Netoff |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Theoden I Netoff |
| authorships[3].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.medrxiv.org/content/medrxiv/early/2025/03/18/2025.03.17.25324121.full.pdf |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-03-21T00:00:00 |
| display_name | Medtronic Percept™Recorded LFP Pre-Processing to Remove Noise and Cardiac Signals From Neural Recordings |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T12419 |
| primary_topic.field.id | https://openalex.org/fields/27 |
| primary_topic.field.display_name | Medicine |
| primary_topic.score | 0.8981999754905701 |
| primary_topic.domain.id | https://openalex.org/domains/4 |
| primary_topic.domain.display_name | Health Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2740 |
| primary_topic.subfield.display_name | Pulmonary and Respiratory Medicine |
| primary_topic.display_name | Phonocardiography and Auscultation Techniques |
| related_works | https://openalex.org/W2113439187, https://openalex.org/W2192888808, https://openalex.org/W2067901665, https://openalex.org/W3006928808, https://openalex.org/W2328454535, https://openalex.org/W1985601989, https://openalex.org/W2014258127, https://openalex.org/W608012375, https://openalex.org/W2067893980, https://openalex.org/W2093624596 |
| cited_by_count | 3 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 3 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1101/2025.03.17.25324121 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306402567 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | bioRxiv (Cold Spring Harbor Laboratory) |
| best_oa_location.source.host_organization | https://openalex.org/I2750212522 |
| best_oa_location.source.host_organization_name | Cold Spring Harbor Laboratory |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I2750212522 |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.medrxiv.org/content/medrxiv/early/2025/03/18/2025.03.17.25324121.full.pdf |
| best_oa_location.version | acceptedVersion |
| best_oa_location.raw_type | posted-content |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.1101/2025.03.17.25324121 |
| primary_location.id | doi:10.1101/2025.03.17.25324121 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306402567 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | bioRxiv (Cold Spring Harbor Laboratory) |
| primary_location.source.host_organization | https://openalex.org/I2750212522 |
| primary_location.source.host_organization_name | Cold Spring Harbor Laboratory |
| primary_location.source.host_organization_lineage | https://openalex.org/I2750212522 |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.medrxiv.org/content/medrxiv/early/2025/03/18/2025.03.17.25324121.full.pdf |
| primary_location.version | acceptedVersion |
| primary_location.raw_type | posted-content |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.1101/2025.03.17.25324121 |
| publication_date | 2025-03-18 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W4375855765, https://openalex.org/W4385650127, https://openalex.org/W2103908673, https://openalex.org/W4312084639, https://openalex.org/W2155722796, https://openalex.org/W2605702050, https://openalex.org/W2899579807, https://openalex.org/W3133918036, https://openalex.org/W4210899347, https://openalex.org/W3194613969, https://openalex.org/W2499608318, https://openalex.org/W4221019021, https://openalex.org/W4321494451, https://openalex.org/W4386059623 |
| referenced_works_count | 14 |
| abstract_inverted_index.8 | 70 |
| abstract_inverted_index.a | 82 |
| abstract_inverted_index.We | 80 |
| abstract_inverted_index.an | 132 |
| abstract_inverted_index.as | 6 |
| abstract_inverted_index.be | 21, 159 |
| abstract_inverted_index.by | 112, 139, 149 |
| abstract_inverted_index.is | 47 |
| abstract_inverted_index.of | 63, 181 |
| abstract_inverted_index.on | 121 |
| abstract_inverted_index.or | 10, 124 |
| abstract_inverted_index.to | 23, 89, 104, 134, 161, 168 |
| abstract_inverted_index.we | 51, 96, 130 |
| abstract_inverted_index.1/f | 143 |
| abstract_inverted_index.Hz) | 78 |
| abstract_inverted_index.LFP | 182 |
| abstract_inverted_index.PSD | 122 |
| abstract_inverted_index.QRS | 91 |
| abstract_inverted_index.RNS | 12 |
| abstract_inverted_index.and | 34, 75, 108, 165 |
| abstract_inverted_index.are | 175 |
| abstract_inverted_index.can | 41 |
| abstract_inverted_index.for | 99, 177 |
| abstract_inverted_index.may | 20 |
| abstract_inverted_index.the | 7, 58, 67, 105, 141, 146, 151, 162, 179 |
| abstract_inverted_index.via | 125 |
| abstract_inverted_index.Here | 50 |
| abstract_inverted_index.Hz), | 71, 74 |
| abstract_inverted_index.beta | 76 |
| abstract_inverted_index.data | 103 |
| abstract_inverted_index.from | 25, 145 |
| abstract_inverted_index.must | 158 |
| abstract_inverted_index.some | 43 |
| abstract_inverted_index.such | 5 |
| abstract_inverted_index.that | 19, 53 |
| abstract_inverted_index.time | 101 |
| abstract_inverted_index.(4– | 69 |
| abstract_inverted_index.(PSD) | 62 |
| abstract_inverted_index.FOOOF | 152 |
| abstract_inverted_index.While | 155 |
| abstract_inverted_index.alpha | 72 |
| abstract_inverted_index.alter | 57 |
| abstract_inverted_index.avoid | 169 |
| abstract_inverted_index.based | 120 |
| abstract_inverted_index.brain | 2 |
| abstract_inverted_index.field | 16 |
| abstract_inverted_index.local | 15 |
| abstract_inverted_index.noise | 24, 172 |
| abstract_inverted_index.often | 48 |
| abstract_inverted_index.power | 59, 147 |
| abstract_inverted_index.these | 171 |
| abstract_inverted_index.theta | 68 |
| abstract_inverted_index.(LFPs) | 18 |
| abstract_inverted_index.bands. | 79 |
| abstract_inverted_index.device | 164 |
| abstract_inverted_index.domain | 102, 107 |
| abstract_inverted_index.filter | 156 |
| abstract_inverted_index.method | 86 |
| abstract_inverted_index.neural | 64, 115, 137 |
| abstract_inverted_index.noise, | 44 |
| abstract_inverted_index.record | 14 |
| abstract_inverted_index.remove | 90 |
| abstract_inverted_index.window | 118 |
| abstract_inverted_index.within | 66 |
| abstract_inverted_index.(8–12 | 73 |
| abstract_inverted_index.Chronic | 1 |
| abstract_inverted_index.cardiac | 32, 54, 93 |
| abstract_inverted_index.complex | 92 |
| abstract_inverted_index.crucial | 176 |
| abstract_inverted_index.density | 61 |
| abstract_inverted_index.filters | 40 |
| abstract_inverted_index.fitting | 150 |
| abstract_inverted_index.isolate | 135 |
| abstract_inverted_index.onboard | 38 |
| abstract_inverted_index.present | 131 |
| abstract_inverted_index.sensing | 3 |
| abstract_inverted_index.system, | 13 |
| abstract_inverted_index.through | 117 |
| abstract_inverted_index.(12–30 | 77 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.Although | 37 |
| abstract_inverted_index.Finally, | 129 |
| abstract_inverted_index.activity | 65, 138 |
| abstract_inverted_index.approach | 133 |
| abstract_inverted_index.describe | 97 |
| abstract_inverted_index.designed | 88 |
| abstract_inverted_index.devices, | 4 |
| abstract_inverted_index.ensuring | 178 |
| abstract_inverted_index.factors, | 29 |
| abstract_inverted_index.hardware | 26, 39 |
| abstract_inverted_index.signals, | 33 |
| abstract_inverted_index.specific | 163 |
| abstract_inverted_index.spectral | 60 |
| abstract_inverted_index.spectrum | 148 |
| abstract_inverted_index.tailored | 160 |
| abstract_inverted_index.template | 84 |
| abstract_inverted_index.Medtronic | 8 |
| abstract_inverted_index.Neuropace | 11 |
| abstract_inverted_index.analysis. | 128 |
| abstract_inverted_index.aperiodic | 142 |
| abstract_inverted_index.artifacts | 55, 111 |
| abstract_inverted_index.attenuate | 42 |
| abstract_inverted_index.component | 127, 144 |
| abstract_inverted_index.frequency | 106 |
| abstract_inverted_index.function. | 154 |
| abstract_inverted_index.integrity | 180 |
| abstract_inverted_index.introduce | 81 |
| abstract_inverted_index.movement, | 30 |
| abstract_inverted_index.principal | 126 |
| abstract_inverted_index.rejection | 119 |
| abstract_inverted_index.required. | 49 |
| abstract_inverted_index.selection | 157 |
| abstract_inverted_index.transient | 110 |
| abstract_inverted_index.Percept™ | 9 |
| abstract_inverted_index.additional | 45 |
| abstract_inverted_index.analytical | 35 |
| abstract_inverted_index.artifacts. | 94 |
| abstract_inverted_index.background | 114 |
| abstract_inverted_index.estimating | 113 |
| abstract_inverted_index.mitigating | 109 |
| abstract_inverted_index.mitigation | 173 |
| abstract_inverted_index.potentials | 17 |
| abstract_inverted_index.processing | 46 |
| abstract_inverted_index.strategies | 174 |
| abstract_inverted_index.techniques | 98 |
| abstract_inverted_index.vulnerable | 22 |
| abstract_inverted_index.Separately, | 95 |
| abstract_inverted_index.demonstrate | 52 |
| abstract_inverted_index.environment | 167 |
| abstract_inverted_index.logarithmic | 153 |
| abstract_inverted_index.oscillatory | 136 |
| abstract_inverted_index.participant | 166 |
| abstract_inverted_index.procedures. | 36 |
| abstract_inverted_index.recordings. | 183 |
| abstract_inverted_index.subtracting | 140 |
| abstract_inverted_index.subtraction | 85 |
| abstract_inverted_index.time-domain | 83 |
| abstract_inverted_index.limitations, | 27 |
| abstract_inverted_index.specifically | 87 |
| abstract_inverted_index.stimulation, | 31 |
| abstract_inverted_index.transforming | 100 |
| abstract_inverted_index.environmental | 28 |
| abstract_inverted_index.significantly | 56 |
| abstract_inverted_index.characteristics | 123 |
| abstract_inverted_index.over-filtering, | 170 |
| abstract_inverted_index.activity—either | 116 |
| cited_by_percentile_year.max | 97 |
| cited_by_percentile_year.min | 96 |
| countries_distinct_count | 0 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile.value | 0.96630306 |
| citation_normalized_percentile.is_in_top_1_percent | True |
| citation_normalized_percentile.is_in_top_10_percent | True |