MeGA-CDA: Memory Guided Attention for Category-Aware Unsupervised Domain Adaptive Object Detection Article Swipe
YOU?
·
· 2021
· Open Access
·
· DOI: https://doi.org/10.1109/cvpr46437.2021.00449
Existing approaches for unsupervised domain adaptive object detection perform feature alignment via adversarial training. While these methods achieve reasonable improvements in performance, they typically perform category-agnostic domain alignment, thereby resulting in negative transfer of features. To overcome this issue, in this work, we attempt to incorporate category information into the domain adaptation process by proposing Memory Guided Attention for Category-Aware Domain Adaptation (MeGA-CDA). The proposed method consists of employing category-wise discriminators to ensure category-aware feature alignment for learning domain-invariant discriminative features. However, since the category information is not available for the target samples, we propose to generate memory-guided category-specific attention maps which are then used to route the features appropriately to the corresponding category discriminator. The proposed method is evaluated on several benchmark datasets and is shown to outperform existing approaches.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- https://doi.org/10.1109/cvpr46437.2021.00449
- OA Status
- green
- Cited By
- 49
- References
- 73
- Related Works
- 20
- OpenAlex ID
- https://openalex.org/W3135497965
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3135497965Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1109/cvpr46437.2021.00449Digital Object Identifier
- Title
-
MeGA-CDA: Memory Guided Attention for Category-Aware Unsupervised Domain Adaptive Object DetectionWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2021Year of publication
- Publication date
-
2021-06-01Full publication date if available
- Authors
-
Vibashan VS, Vikram Gupta, Poojan Oza, Vishwanath A. Sindagi, Vishal M. PatelList of authors in order
- Landing page
-
https://doi.org/10.1109/cvpr46437.2021.00449Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2103.04224Direct OA link when available
- Concepts
-
Discriminative model, Computer science, Artificial intelligence, Discriminator, Domain (mathematical analysis), Benchmark (surveying), Feature (linguistics), Pattern recognition (psychology), Domain adaptation, Process (computing), Object (grammar), Machine learning, Categorization, Object detection, Classifier (UML), Mathematics, Mathematical analysis, Geography, Philosophy, Operating system, Linguistics, Geodesy, Telecommunications, DetectorTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
49Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 6, 2024: 17, 2023: 13, 2022: 11, 2021: 2Per-year citation counts (last 5 years)
- References (count)
-
73Number of works referenced by this work
- Related works (count)
-
20Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3135497965 |
|---|---|
| doi | https://doi.org/10.1109/cvpr46437.2021.00449 |
| ids.doi | https://doi.org/10.48550/arxiv.2103.04224 |
| ids.mag | 3135497965 |
| ids.openalex | https://openalex.org/W3135497965 |
| fwci | 6.06745373 |
| type | preprint |
| title | MeGA-CDA: Memory Guided Attention for Category-Aware Unsupervised Domain Adaptive Object Detection |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11307 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9998999834060669 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Domain Adaptation and Few-Shot Learning |
| topics[1].id | https://openalex.org/T11775 |
| topics[1].field.id | https://openalex.org/fields/27 |
| topics[1].field.display_name | Medicine |
| topics[1].score | 0.9955000281333923 |
| topics[1].domain.id | https://openalex.org/domains/4 |
| topics[1].domain.display_name | Health Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2741 |
| topics[1].subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| topics[1].display_name | COVID-19 diagnosis using AI |
| topics[2].id | https://openalex.org/T11714 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9843999743461609 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1707 |
| topics[2].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[2].display_name | Multimodal Machine Learning Applications |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C97931131 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7969472408294678 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q5282087 |
| concepts[0].display_name | Discriminative model |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.7870919704437256 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C154945302 |
| concepts[2].level | 1 |
| concepts[2].score | 0.7039755582809448 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[2].display_name | Artificial intelligence |
| concepts[3].id | https://openalex.org/C2779803651 |
| concepts[3].level | 3 |
| concepts[3].score | 0.7012417316436768 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q5282088 |
| concepts[3].display_name | Discriminator |
| concepts[4].id | https://openalex.org/C36503486 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5823284387588501 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q11235244 |
| concepts[4].display_name | Domain (mathematical analysis) |
| concepts[5].id | https://openalex.org/C185798385 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5455883741378784 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1161707 |
| concepts[5].display_name | Benchmark (surveying) |
| concepts[6].id | https://openalex.org/C2776401178 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5294755697250366 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q12050496 |
| concepts[6].display_name | Feature (linguistics) |
| concepts[7].id | https://openalex.org/C153180895 |
| concepts[7].level | 2 |
| concepts[7].score | 0.5210323333740234 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[7].display_name | Pattern recognition (psychology) |
| concepts[8].id | https://openalex.org/C2776434776 |
| concepts[8].level | 3 |
| concepts[8].score | 0.5187109112739563 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q19246213 |
| concepts[8].display_name | Domain adaptation |
| concepts[9].id | https://openalex.org/C98045186 |
| concepts[9].level | 2 |
| concepts[9].score | 0.5050716996192932 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q205663 |
| concepts[9].display_name | Process (computing) |
| concepts[10].id | https://openalex.org/C2781238097 |
| concepts[10].level | 2 |
| concepts[10].score | 0.49128836393356323 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q175026 |
| concepts[10].display_name | Object (grammar) |
| concepts[11].id | https://openalex.org/C119857082 |
| concepts[11].level | 1 |
| concepts[11].score | 0.4888131320476532 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[11].display_name | Machine learning |
| concepts[12].id | https://openalex.org/C94124525 |
| concepts[12].level | 2 |
| concepts[12].score | 0.45840054750442505 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q912550 |
| concepts[12].display_name | Categorization |
| concepts[13].id | https://openalex.org/C2776151529 |
| concepts[13].level | 3 |
| concepts[13].score | 0.4202401041984558 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q3045304 |
| concepts[13].display_name | Object detection |
| concepts[14].id | https://openalex.org/C95623464 |
| concepts[14].level | 2 |
| concepts[14].score | 0.11020311713218689 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q1096149 |
| concepts[14].display_name | Classifier (UML) |
| concepts[15].id | https://openalex.org/C33923547 |
| concepts[15].level | 0 |
| concepts[15].score | 0.07991957664489746 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[15].display_name | Mathematics |
| concepts[16].id | https://openalex.org/C134306372 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q7754 |
| concepts[16].display_name | Mathematical analysis |
| concepts[17].id | https://openalex.org/C205649164 |
| concepts[17].level | 0 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[17].display_name | Geography |
| concepts[18].id | https://openalex.org/C138885662 |
| concepts[18].level | 0 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[18].display_name | Philosophy |
| concepts[19].id | https://openalex.org/C111919701 |
| concepts[19].level | 1 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q9135 |
| concepts[19].display_name | Operating system |
| concepts[20].id | https://openalex.org/C41895202 |
| concepts[20].level | 1 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q8162 |
| concepts[20].display_name | Linguistics |
| concepts[21].id | https://openalex.org/C13280743 |
| concepts[21].level | 1 |
| concepts[21].score | 0.0 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q131089 |
| concepts[21].display_name | Geodesy |
| concepts[22].id | https://openalex.org/C76155785 |
| concepts[22].level | 1 |
| concepts[22].score | 0.0 |
| concepts[22].wikidata | https://www.wikidata.org/wiki/Q418 |
| concepts[22].display_name | Telecommunications |
| concepts[23].id | https://openalex.org/C94915269 |
| concepts[23].level | 2 |
| concepts[23].score | 0.0 |
| concepts[23].wikidata | https://www.wikidata.org/wiki/Q1834857 |
| concepts[23].display_name | Detector |
| keywords[0].id | https://openalex.org/keywords/discriminative-model |
| keywords[0].score | 0.7969472408294678 |
| keywords[0].display_name | Discriminative model |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.7870919704437256 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[2].score | 0.7039755582809448 |
| keywords[2].display_name | Artificial intelligence |
| keywords[3].id | https://openalex.org/keywords/discriminator |
| keywords[3].score | 0.7012417316436768 |
| keywords[3].display_name | Discriminator |
| keywords[4].id | https://openalex.org/keywords/domain |
| keywords[4].score | 0.5823284387588501 |
| keywords[4].display_name | Domain (mathematical analysis) |
| keywords[5].id | https://openalex.org/keywords/benchmark |
| keywords[5].score | 0.5455883741378784 |
| keywords[5].display_name | Benchmark (surveying) |
| keywords[6].id | https://openalex.org/keywords/feature |
| keywords[6].score | 0.5294755697250366 |
| keywords[6].display_name | Feature (linguistics) |
| keywords[7].id | https://openalex.org/keywords/pattern-recognition |
| keywords[7].score | 0.5210323333740234 |
| keywords[7].display_name | Pattern recognition (psychology) |
| keywords[8].id | https://openalex.org/keywords/domain-adaptation |
| keywords[8].score | 0.5187109112739563 |
| keywords[8].display_name | Domain adaptation |
| keywords[9].id | https://openalex.org/keywords/process |
| keywords[9].score | 0.5050716996192932 |
| keywords[9].display_name | Process (computing) |
| keywords[10].id | https://openalex.org/keywords/object |
| keywords[10].score | 0.49128836393356323 |
| keywords[10].display_name | Object (grammar) |
| keywords[11].id | https://openalex.org/keywords/machine-learning |
| keywords[11].score | 0.4888131320476532 |
| keywords[11].display_name | Machine learning |
| keywords[12].id | https://openalex.org/keywords/categorization |
| keywords[12].score | 0.45840054750442505 |
| keywords[12].display_name | Categorization |
| keywords[13].id | https://openalex.org/keywords/object-detection |
| keywords[13].score | 0.4202401041984558 |
| keywords[13].display_name | Object detection |
| keywords[14].id | https://openalex.org/keywords/classifier |
| keywords[14].score | 0.11020311713218689 |
| keywords[14].display_name | Classifier (UML) |
| keywords[15].id | https://openalex.org/keywords/mathematics |
| keywords[15].score | 0.07991957664489746 |
| keywords[15].display_name | Mathematics |
| language | en |
| locations[0].id | doi:10.1109/cvpr46437.2021.00449 |
| locations[0].is_oa | False |
| locations[0].source | |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | proceedings-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) |
| locations[0].landing_page_url | https://doi.org/10.1109/cvpr46437.2021.00449 |
| locations[1].id | pmh:oai:arXiv.org:2103.04224 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | https://arxiv.org/pdf/2103.04224 |
| locations[1].version | submittedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | http://arxiv.org/abs/2103.04224 |
| locations[2].id | mag:3135497965 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S4306400194 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | True |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | arXiv (Cornell University) |
| locations[2].source.host_organization | https://openalex.org/I205783295 |
| locations[2].source.host_organization_name | Cornell University |
| locations[2].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | arXiv (Cornell University) |
| locations[2].landing_page_url | http://arxiv.org/pdf/2103.04224.pdf |
| locations[3].id | doi:10.48550/arxiv.2103.04224 |
| locations[3].is_oa | True |
| locations[3].source.id | https://openalex.org/S4306400194 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | True |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | arXiv (Cornell University) |
| locations[3].source.host_organization | https://openalex.org/I205783295 |
| locations[3].source.host_organization_name | Cornell University |
| locations[3].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[3].license | |
| locations[3].pdf_url | |
| locations[3].version | |
| locations[3].raw_type | article |
| locations[3].license_id | |
| locations[3].is_accepted | False |
| locations[3].is_published | |
| locations[3].raw_source_name | |
| locations[3].landing_page_url | https://doi.org/10.48550/arxiv.2103.04224 |
| indexed_in | arxiv, crossref, datacite |
| authorships[0].author.id | https://openalex.org/A5004330920 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Vibashan VS |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I145311948 |
| authorships[0].affiliations[0].raw_affiliation_string | Johns Hopkins Univ., Baltimore, MD (USA) |
| authorships[0].institutions[0].id | https://openalex.org/I145311948 |
| authorships[0].institutions[0].ror | https://ror.org/00za53h95 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I145311948 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | Johns Hopkins University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Vibashan Vs |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Johns Hopkins Univ., Baltimore, MD (USA) |
| authorships[1].author.id | https://openalex.org/A5102213281 |
| authorships[1].author.orcid | https://orcid.org/0009-0003-2021-695X |
| authorships[1].author.display_name | Vikram Gupta |
| authorships[1].affiliations[0].raw_affiliation_string | Mercedes Benz Research and Development India |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Vikram Gupta |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Mercedes Benz Research and Development India |
| authorships[2].author.id | https://openalex.org/A5062459443 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-5993-6650 |
| authorships[2].author.display_name | Poojan Oza |
| authorships[2].countries | US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I145311948 |
| authorships[2].affiliations[0].raw_affiliation_string | Johns Hopkins Univ., Baltimore, MD (USA) |
| authorships[2].institutions[0].id | https://openalex.org/I145311948 |
| authorships[2].institutions[0].ror | https://ror.org/00za53h95 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I145311948 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | Johns Hopkins University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Poojan Oza |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Johns Hopkins Univ., Baltimore, MD (USA) |
| authorships[3].author.id | https://openalex.org/A5036034054 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-4192-5547 |
| authorships[3].author.display_name | Vishwanath A. Sindagi |
| authorships[3].countries | US |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I145311948 |
| authorships[3].affiliations[0].raw_affiliation_string | Johns Hopkins Univ., Baltimore, MD (USA) |
| authorships[3].institutions[0].id | https://openalex.org/I145311948 |
| authorships[3].institutions[0].ror | https://ror.org/00za53h95 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I145311948 |
| authorships[3].institutions[0].country_code | US |
| authorships[3].institutions[0].display_name | Johns Hopkins University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Vishwanath A. Sindagi |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Johns Hopkins Univ., Baltimore, MD (USA) |
| authorships[4].author.id | https://openalex.org/A5004716468 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-5239-692X |
| authorships[4].author.display_name | Vishal M. Patel |
| authorships[4].countries | US |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I145311948 |
| authorships[4].affiliations[0].raw_affiliation_string | Johns Hopkins Univ., Baltimore, MD (USA) |
| authorships[4].institutions[0].id | https://openalex.org/I145311948 |
| authorships[4].institutions[0].ror | https://ror.org/00za53h95 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I145311948 |
| authorships[4].institutions[0].country_code | US |
| authorships[4].institutions[0].display_name | Johns Hopkins University |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Vishal M. Patel |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Johns Hopkins Univ., Baltimore, MD (USA) |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2103.04224 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | MeGA-CDA: Memory Guided Attention for Category-Aware Unsupervised Domain Adaptive Object Detection |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11307 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9998999834060669 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Domain Adaptation and Few-Shot Learning |
| related_works | https://openalex.org/W3180426564, https://openalex.org/W2771358947, https://openalex.org/W2979920800, https://openalex.org/W3200888063, https://openalex.org/W3199778150, https://openalex.org/W3173206925, https://openalex.org/W3149860822, https://openalex.org/W3038692131, https://openalex.org/W3176013316, https://openalex.org/W3027995188, https://openalex.org/W2948462823, https://openalex.org/W2948636084, https://openalex.org/W2919206487, https://openalex.org/W3034373787, https://openalex.org/W2948959975, https://openalex.org/W2963532621, https://openalex.org/W3205594649, https://openalex.org/W3100164293, https://openalex.org/W3190739399, https://openalex.org/W3197461641 |
| cited_by_count | 49 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 6 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 17 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 13 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 11 |
| counts_by_year[4].year | 2021 |
| counts_by_year[4].cited_by_count | 2 |
| locations_count | 4 |
| best_oa_location.id | pmh:oai:arXiv.org:2103.04224 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2103.04224 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2103.04224 |
| primary_location.id | doi:10.1109/cvpr46437.2021.00449 |
| primary_location.is_oa | False |
| primary_location.source | |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | proceedings-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) |
| primary_location.landing_page_url | https://doi.org/10.1109/cvpr46437.2021.00449 |
| publication_date | 2021-06-01 |
| publication_year | 2021 |
| referenced_works | https://openalex.org/W2964277612, https://openalex.org/W6620707391, https://openalex.org/W2963403405, https://openalex.org/W2593414223, https://openalex.org/W6713955831, https://openalex.org/W6695692224, https://openalex.org/W6628973269, https://openalex.org/W2963214698, https://openalex.org/W1982696459, https://openalex.org/W3035240825, https://openalex.org/W6785652829, https://openalex.org/W6639102338, https://openalex.org/W6750109254, https://openalex.org/W2790696102, https://openalex.org/W2613924013, https://openalex.org/W3110011650, https://openalex.org/W2528963632, https://openalex.org/W2798453135, https://openalex.org/W2981705647, https://openalex.org/W6732703391, https://openalex.org/W6679844565, https://openalex.org/W2969583814, https://openalex.org/W2786808285, https://openalex.org/W6732742072, https://openalex.org/W6765084338, https://openalex.org/W6736210646, https://openalex.org/W3107090469, https://openalex.org/W3034779842, https://openalex.org/W2954199749, https://openalex.org/W2168356304, https://openalex.org/W6757734556, https://openalex.org/W6639480849, https://openalex.org/W2115579991, https://openalex.org/W6631782140, https://openalex.org/W2102605133, https://openalex.org/W2987228832, https://openalex.org/W2990740643, https://openalex.org/W6780706866, https://openalex.org/W6746282794, https://openalex.org/W2104094955, https://openalex.org/W6778784632, https://openalex.org/W2964115968, https://openalex.org/W2979548969, https://openalex.org/W2108598243, https://openalex.org/W2340897893, https://openalex.org/W2164598857, https://openalex.org/W2031489346, https://openalex.org/W3109202794, https://openalex.org/W6748312029, https://openalex.org/W2593768305, https://openalex.org/W6638318767, https://openalex.org/W2748021867, https://openalex.org/W2962687275, https://openalex.org/W2968762770, https://openalex.org/W2605488490, https://openalex.org/W2963037989, https://openalex.org/W3107610277, https://openalex.org/W2962793481, https://openalex.org/W2964091467, https://openalex.org/W3030206225, https://openalex.org/W2962808524, https://openalex.org/W2964278684, https://openalex.org/W2931238266, https://openalex.org/W2795155917, https://openalex.org/W2963826681, https://openalex.org/W1536680647, https://openalex.org/W2905357333, https://openalex.org/W2962970380, https://openalex.org/W3116546446, https://openalex.org/W3106250896, https://openalex.org/W2279034837, https://openalex.org/W2953044442, https://openalex.org/W1861492603 |
| referenced_works_count | 73 |
| abstract_inverted_index.To | 35 |
| abstract_inverted_index.by | 53 |
| abstract_inverted_index.in | 20, 30, 39 |
| abstract_inverted_index.is | 86, 118, 125 |
| abstract_inverted_index.of | 33, 67 |
| abstract_inverted_index.on | 120 |
| abstract_inverted_index.to | 44, 71, 95, 105, 110, 127 |
| abstract_inverted_index.we | 42, 93 |
| abstract_inverted_index.The | 63, 115 |
| abstract_inverted_index.and | 124 |
| abstract_inverted_index.are | 102 |
| abstract_inverted_index.for | 2, 58, 76, 89 |
| abstract_inverted_index.not | 87 |
| abstract_inverted_index.the | 49, 83, 90, 107, 111 |
| abstract_inverted_index.via | 11 |
| abstract_inverted_index.into | 48 |
| abstract_inverted_index.maps | 100 |
| abstract_inverted_index.then | 103 |
| abstract_inverted_index.they | 22 |
| abstract_inverted_index.this | 37, 40 |
| abstract_inverted_index.used | 104 |
| abstract_inverted_index.While | 14 |
| abstract_inverted_index.route | 106 |
| abstract_inverted_index.shown | 126 |
| abstract_inverted_index.since | 82 |
| abstract_inverted_index.these | 15 |
| abstract_inverted_index.which | 101 |
| abstract_inverted_index.work, | 41 |
| abstract_inverted_index.Domain | 60 |
| abstract_inverted_index.Guided | 56 |
| abstract_inverted_index.Memory | 55 |
| abstract_inverted_index.domain | 4, 26, 50 |
| abstract_inverted_index.ensure | 72 |
| abstract_inverted_index.issue, | 38 |
| abstract_inverted_index.method | 65, 117 |
| abstract_inverted_index.object | 6 |
| abstract_inverted_index.target | 91 |
| abstract_inverted_index.achieve | 17 |
| abstract_inverted_index.attempt | 43 |
| abstract_inverted_index.feature | 9, 74 |
| abstract_inverted_index.methods | 16 |
| abstract_inverted_index.perform | 8, 24 |
| abstract_inverted_index.process | 52 |
| abstract_inverted_index.propose | 94 |
| abstract_inverted_index.several | 121 |
| abstract_inverted_index.thereby | 28 |
| abstract_inverted_index.Existing | 0 |
| abstract_inverted_index.However, | 81 |
| abstract_inverted_index.adaptive | 5 |
| abstract_inverted_index.category | 46, 84, 113 |
| abstract_inverted_index.consists | 66 |
| abstract_inverted_index.datasets | 123 |
| abstract_inverted_index.existing | 129 |
| abstract_inverted_index.features | 108 |
| abstract_inverted_index.generate | 96 |
| abstract_inverted_index.learning | 77 |
| abstract_inverted_index.negative | 31 |
| abstract_inverted_index.overcome | 36 |
| abstract_inverted_index.proposed | 64, 116 |
| abstract_inverted_index.samples, | 92 |
| abstract_inverted_index.transfer | 32 |
| abstract_inverted_index.Attention | 57 |
| abstract_inverted_index.alignment | 10, 75 |
| abstract_inverted_index.attention | 99 |
| abstract_inverted_index.available | 88 |
| abstract_inverted_index.benchmark | 122 |
| abstract_inverted_index.detection | 7 |
| abstract_inverted_index.employing | 68 |
| abstract_inverted_index.evaluated | 119 |
| abstract_inverted_index.features. | 34, 80 |
| abstract_inverted_index.proposing | 54 |
| abstract_inverted_index.resulting | 29 |
| abstract_inverted_index.training. | 13 |
| abstract_inverted_index.typically | 23 |
| abstract_inverted_index.Adaptation | 61 |
| abstract_inverted_index.adaptation | 51 |
| abstract_inverted_index.alignment, | 27 |
| abstract_inverted_index.approaches | 1 |
| abstract_inverted_index.outperform | 128 |
| abstract_inverted_index.reasonable | 18 |
| abstract_inverted_index.(MeGA-CDA). | 62 |
| abstract_inverted_index.adversarial | 12 |
| abstract_inverted_index.approaches. | 130 |
| abstract_inverted_index.incorporate | 45 |
| abstract_inverted_index.information | 47, 85 |
| abstract_inverted_index.improvements | 19 |
| abstract_inverted_index.performance, | 21 |
| abstract_inverted_index.unsupervised | 3 |
| abstract_inverted_index.appropriately | 109 |
| abstract_inverted_index.category-wise | 69 |
| abstract_inverted_index.corresponding | 112 |
| abstract_inverted_index.memory-guided | 97 |
| abstract_inverted_index.Category-Aware | 59 |
| abstract_inverted_index.category-aware | 73 |
| abstract_inverted_index.discriminative | 79 |
| abstract_inverted_index.discriminator. | 114 |
| abstract_inverted_index.discriminators | 70 |
| abstract_inverted_index.domain-invariant | 78 |
| abstract_inverted_index.category-agnostic | 25 |
| abstract_inverted_index.category-specific | 98 |
| cited_by_percentile_year.max | 100 |
| cited_by_percentile_year.min | 93 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 5 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/10 |
| sustainable_development_goals[0].score | 0.7599999904632568 |
| sustainable_development_goals[0].display_name | Reduced inequalities |
| citation_normalized_percentile.value | 0.96889951 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |