MEGA-GO: functions prediction of diverse protein sequence length using Multi-scalE Graph Adaptive neural network Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1093/bioinformatics/btaf032
Motivation The increasing accessibility of large-scale protein sequences through advanced sequencing technologies has necessitated the development of efficient and accurate methods for predicting protein function. Computational prediction models have emerged as a promising solution to expedite the annotation process. However, despite making significant progress in protein research, graph neural networks face challenges in capturing long-range structural correlations and identifying critical residues in protein graphs. Furthermore, existing models have limitations in effectively predicting the function of newly sequenced proteins that are not included in protein interaction networks. This highlights the need for novel approaches integrating protein structure and sequence data. Results We introduce Multi-scalE Graph Adaptive neural network (MEGA-GO), highlighting the capability of capturing diverse protein sequence length features from multiple scales. The unique graph adaptive neural network architecture of MEGA-GO enables a more nuanced extraction of graph structure features, effectively capturing intricate relationships within biological data. Experimental results demonstrate that MEGA-GO outperforms mainstream protein function prediction models in the accuracy of Gene Ontology term classification, yielding 33.4%, 68.9%, and 44.6% of area under the precision-recall curve on biological process, molecular function, and cellular component domains, respectively. The rest of the experimental results reveal that our model consistently surpasses the state-of-the-art methods. Availability and implementation The source code and data of MEGA-GO are available at https://github.com/Cheliosoops/MEGA-GO.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1093/bioinformatics/btaf032
- https://academic.oup.com/bioinformatics/advance-article-pdf/doi/10.1093/bioinformatics/btaf032/61591799/btaf032.pdf
- OA Status
- gold
- Cited By
- 2
- References
- 40
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4406739182
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4406739182Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1093/bioinformatics/btaf032Digital Object Identifier
- Title
-
MEGA-GO: functions prediction of diverse protein sequence length using Multi-scalE Graph Adaptive neural networkWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-01-23Full publication date if available
- Authors
-
Yujian Lee, Peng Gao, Yongqi Xu, Ziyang Wang, Shuai Cheng Li, Jiaxing ChenList of authors in order
- Landing page
-
https://doi.org/10.1093/bioinformatics/btaf032Publisher landing page
- PDF URL
-
https://academic.oup.com/bioinformatics/advance-article-pdf/doi/10.1093/bioinformatics/btaf032/61591799/btaf032.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://academic.oup.com/bioinformatics/advance-article-pdf/doi/10.1093/bioinformatics/btaf032/61591799/btaf032.pdfDirect OA link when available
- Concepts
-
Computer science, Protein function prediction, Graph, Source code, Data mining, Protein function, Artificial neural network, Artificial intelligence, Mega-, Machine learning, Theoretical computer science, Biology, Gene, Physics, Operating system, Biochemistry, AstronomyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
2Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 2Per-year citation counts (last 5 years)
- References (count)
-
40Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4406739182 |
|---|---|
| doi | https://doi.org/10.1093/bioinformatics/btaf032 |
| ids.doi | https://doi.org/10.1093/bioinformatics/btaf032 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/39847542 |
| ids.openalex | https://openalex.org/W4406739182 |
| fwci | 5.36588926 |
| mesh[0].qualifier_ui | |
| mesh[0].descriptor_ui | D016571 |
| mesh[0].is_major_topic | True |
| mesh[0].qualifier_name | |
| mesh[0].descriptor_name | Neural Networks, Computer |
| mesh[1].qualifier_ui | Q000737 |
| mesh[1].descriptor_ui | D011506 |
| mesh[1].is_major_topic | True |
| mesh[1].qualifier_name | chemistry |
| mesh[1].descriptor_name | Proteins |
| mesh[2].qualifier_ui | Q000378 |
| mesh[2].descriptor_ui | D011506 |
| mesh[2].is_major_topic | True |
| mesh[2].qualifier_name | metabolism |
| mesh[2].descriptor_name | Proteins |
| mesh[3].qualifier_ui | Q000379 |
| mesh[3].descriptor_ui | D019295 |
| mesh[3].is_major_topic | False |
| mesh[3].qualifier_name | methods |
| mesh[3].descriptor_name | Computational Biology |
| mesh[4].qualifier_ui | Q000379 |
| mesh[4].descriptor_ui | D020539 |
| mesh[4].is_major_topic | False |
| mesh[4].qualifier_name | methods |
| mesh[4].descriptor_name | Sequence Analysis, Protein |
| mesh[5].qualifier_ui | |
| mesh[5].descriptor_ui | D000465 |
| mesh[5].is_major_topic | False |
| mesh[5].qualifier_name | |
| mesh[5].descriptor_name | Algorithms |
| mesh[6].qualifier_ui | |
| mesh[6].descriptor_ui | D063990 |
| mesh[6].is_major_topic | False |
| mesh[6].qualifier_name | |
| mesh[6].descriptor_name | Gene Ontology |
| mesh[7].qualifier_ui | |
| mesh[7].descriptor_ui | D000595 |
| mesh[7].is_major_topic | False |
| mesh[7].qualifier_name | |
| mesh[7].descriptor_name | Amino Acid Sequence |
| mesh[8].qualifier_ui | |
| mesh[8].descriptor_ui | D030562 |
| mesh[8].is_major_topic | False |
| mesh[8].qualifier_name | |
| mesh[8].descriptor_name | Databases, Protein |
| mesh[9].qualifier_ui | |
| mesh[9].descriptor_ui | D016571 |
| mesh[9].is_major_topic | True |
| mesh[9].qualifier_name | |
| mesh[9].descriptor_name | Neural Networks, Computer |
| mesh[10].qualifier_ui | Q000737 |
| mesh[10].descriptor_ui | D011506 |
| mesh[10].is_major_topic | True |
| mesh[10].qualifier_name | chemistry |
| mesh[10].descriptor_name | Proteins |
| mesh[11].qualifier_ui | Q000378 |
| mesh[11].descriptor_ui | D011506 |
| mesh[11].is_major_topic | True |
| mesh[11].qualifier_name | metabolism |
| mesh[11].descriptor_name | Proteins |
| mesh[12].qualifier_ui | Q000379 |
| mesh[12].descriptor_ui | D019295 |
| mesh[12].is_major_topic | False |
| mesh[12].qualifier_name | methods |
| mesh[12].descriptor_name | Computational Biology |
| mesh[13].qualifier_ui | Q000379 |
| mesh[13].descriptor_ui | D020539 |
| mesh[13].is_major_topic | False |
| mesh[13].qualifier_name | methods |
| mesh[13].descriptor_name | Sequence Analysis, Protein |
| mesh[14].qualifier_ui | |
| mesh[14].descriptor_ui | D000465 |
| mesh[14].is_major_topic | False |
| mesh[14].qualifier_name | |
| mesh[14].descriptor_name | Algorithms |
| mesh[15].qualifier_ui | |
| mesh[15].descriptor_ui | D063990 |
| mesh[15].is_major_topic | False |
| mesh[15].qualifier_name | |
| mesh[15].descriptor_name | Gene Ontology |
| mesh[16].qualifier_ui | |
| mesh[16].descriptor_ui | D000595 |
| mesh[16].is_major_topic | False |
| mesh[16].qualifier_name | |
| mesh[16].descriptor_name | Amino Acid Sequence |
| mesh[17].qualifier_ui | |
| mesh[17].descriptor_ui | D030562 |
| mesh[17].is_major_topic | False |
| mesh[17].qualifier_name | |
| mesh[17].descriptor_name | Databases, Protein |
| mesh[18].qualifier_ui | |
| mesh[18].descriptor_ui | D016571 |
| mesh[18].is_major_topic | True |
| mesh[18].qualifier_name | |
| mesh[18].descriptor_name | Neural Networks, Computer |
| mesh[19].qualifier_ui | Q000737 |
| mesh[19].descriptor_ui | D011506 |
| mesh[19].is_major_topic | True |
| mesh[19].qualifier_name | chemistry |
| mesh[19].descriptor_name | Proteins |
| mesh[20].qualifier_ui | Q000378 |
| mesh[20].descriptor_ui | D011506 |
| mesh[20].is_major_topic | True |
| mesh[20].qualifier_name | metabolism |
| mesh[20].descriptor_name | Proteins |
| mesh[21].qualifier_ui | Q000379 |
| mesh[21].descriptor_ui | D019295 |
| mesh[21].is_major_topic | False |
| mesh[21].qualifier_name | methods |
| mesh[21].descriptor_name | Computational Biology |
| mesh[22].qualifier_ui | Q000379 |
| mesh[22].descriptor_ui | D020539 |
| mesh[22].is_major_topic | False |
| mesh[22].qualifier_name | methods |
| mesh[22].descriptor_name | Sequence Analysis, Protein |
| mesh[23].qualifier_ui | |
| mesh[23].descriptor_ui | D000465 |
| mesh[23].is_major_topic | False |
| mesh[23].qualifier_name | |
| mesh[23].descriptor_name | Algorithms |
| mesh[24].qualifier_ui | |
| mesh[24].descriptor_ui | D063990 |
| mesh[24].is_major_topic | False |
| mesh[24].qualifier_name | |
| mesh[24].descriptor_name | Gene Ontology |
| mesh[25].qualifier_ui | |
| mesh[25].descriptor_ui | D000595 |
| mesh[25].is_major_topic | False |
| mesh[25].qualifier_name | |
| mesh[25].descriptor_name | Amino Acid Sequence |
| mesh[26].qualifier_ui | |
| mesh[26].descriptor_ui | D030562 |
| mesh[26].is_major_topic | False |
| mesh[26].qualifier_name | |
| mesh[26].descriptor_name | Databases, Protein |
| mesh[27].qualifier_ui | |
| mesh[27].descriptor_ui | D016571 |
| mesh[27].is_major_topic | True |
| mesh[27].qualifier_name | |
| mesh[27].descriptor_name | Neural Networks, Computer |
| mesh[28].qualifier_ui | Q000737 |
| mesh[28].descriptor_ui | D011506 |
| mesh[28].is_major_topic | True |
| mesh[28].qualifier_name | chemistry |
| mesh[28].descriptor_name | Proteins |
| mesh[29].qualifier_ui | Q000378 |
| mesh[29].descriptor_ui | D011506 |
| mesh[29].is_major_topic | True |
| mesh[29].qualifier_name | metabolism |
| mesh[29].descriptor_name | Proteins |
| mesh[30].qualifier_ui | Q000379 |
| mesh[30].descriptor_ui | D019295 |
| mesh[30].is_major_topic | False |
| mesh[30].qualifier_name | methods |
| mesh[30].descriptor_name | Computational Biology |
| mesh[31].qualifier_ui | Q000379 |
| mesh[31].descriptor_ui | D020539 |
| mesh[31].is_major_topic | False |
| mesh[31].qualifier_name | methods |
| mesh[31].descriptor_name | Sequence Analysis, Protein |
| mesh[32].qualifier_ui | |
| mesh[32].descriptor_ui | D000465 |
| mesh[32].is_major_topic | False |
| mesh[32].qualifier_name | |
| mesh[32].descriptor_name | Algorithms |
| mesh[33].qualifier_ui | |
| mesh[33].descriptor_ui | D063990 |
| mesh[33].is_major_topic | False |
| mesh[33].qualifier_name | |
| mesh[33].descriptor_name | Gene Ontology |
| mesh[34].qualifier_ui | |
| mesh[34].descriptor_ui | D000595 |
| mesh[34].is_major_topic | False |
| mesh[34].qualifier_name | |
| mesh[34].descriptor_name | Amino Acid Sequence |
| mesh[35].qualifier_ui | |
| mesh[35].descriptor_ui | D030562 |
| mesh[35].is_major_topic | False |
| mesh[35].qualifier_name | |
| mesh[35].descriptor_name | Databases, Protein |
| mesh[36].qualifier_ui | |
| mesh[36].descriptor_ui | D016571 |
| mesh[36].is_major_topic | True |
| mesh[36].qualifier_name | |
| mesh[36].descriptor_name | Neural Networks, Computer |
| mesh[37].qualifier_ui | Q000737 |
| mesh[37].descriptor_ui | D011506 |
| mesh[37].is_major_topic | True |
| mesh[37].qualifier_name | chemistry |
| mesh[37].descriptor_name | Proteins |
| mesh[38].qualifier_ui | Q000378 |
| mesh[38].descriptor_ui | D011506 |
| mesh[38].is_major_topic | True |
| mesh[38].qualifier_name | metabolism |
| mesh[38].descriptor_name | Proteins |
| mesh[39].qualifier_ui | Q000379 |
| mesh[39].descriptor_ui | D019295 |
| mesh[39].is_major_topic | False |
| mesh[39].qualifier_name | methods |
| mesh[39].descriptor_name | Computational Biology |
| mesh[40].qualifier_ui | Q000379 |
| mesh[40].descriptor_ui | D020539 |
| mesh[40].is_major_topic | False |
| mesh[40].qualifier_name | methods |
| mesh[40].descriptor_name | Sequence Analysis, Protein |
| mesh[41].qualifier_ui | |
| mesh[41].descriptor_ui | D000465 |
| mesh[41].is_major_topic | False |
| mesh[41].qualifier_name | |
| mesh[41].descriptor_name | Algorithms |
| mesh[42].qualifier_ui | |
| mesh[42].descriptor_ui | D063990 |
| mesh[42].is_major_topic | False |
| mesh[42].qualifier_name | |
| mesh[42].descriptor_name | Gene Ontology |
| mesh[43].qualifier_ui | |
| mesh[43].descriptor_ui | D000595 |
| mesh[43].is_major_topic | False |
| mesh[43].qualifier_name | |
| mesh[43].descriptor_name | Amino Acid Sequence |
| mesh[44].qualifier_ui | |
| mesh[44].descriptor_ui | D030562 |
| mesh[44].is_major_topic | False |
| mesh[44].qualifier_name | |
| mesh[44].descriptor_name | Databases, Protein |
| mesh[45].qualifier_ui | |
| mesh[45].descriptor_ui | D016571 |
| mesh[45].is_major_topic | True |
| mesh[45].qualifier_name | |
| mesh[45].descriptor_name | Neural Networks, Computer |
| mesh[46].qualifier_ui | Q000737 |
| mesh[46].descriptor_ui | D011506 |
| mesh[46].is_major_topic | True |
| mesh[46].qualifier_name | chemistry |
| mesh[46].descriptor_name | Proteins |
| mesh[47].qualifier_ui | Q000378 |
| mesh[47].descriptor_ui | D011506 |
| mesh[47].is_major_topic | True |
| mesh[47].qualifier_name | metabolism |
| mesh[47].descriptor_name | Proteins |
| mesh[48].qualifier_ui | Q000379 |
| mesh[48].descriptor_ui | D019295 |
| mesh[48].is_major_topic | False |
| mesh[48].qualifier_name | methods |
| mesh[48].descriptor_name | Computational Biology |
| mesh[49].qualifier_ui | Q000379 |
| mesh[49].descriptor_ui | D020539 |
| mesh[49].is_major_topic | False |
| mesh[49].qualifier_name | methods |
| mesh[49].descriptor_name | Sequence Analysis, Protein |
| type | article |
| title | MEGA-GO: functions prediction of diverse protein sequence length using Multi-scalE Graph Adaptive neural network |
| biblio.issue | 2 |
| biblio.volume | 41 |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10887 |
| topics[0].field.id | https://openalex.org/fields/13 |
| topics[0].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[0].score | 0.9997000098228455 |
| topics[0].domain.id | https://openalex.org/domains/1 |
| topics[0].domain.display_name | Life Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1312 |
| topics[0].subfield.display_name | Molecular Biology |
| topics[0].display_name | Bioinformatics and Genomic Networks |
| topics[1].id | https://openalex.org/T12254 |
| topics[1].field.id | https://openalex.org/fields/13 |
| topics[1].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[1].score | 0.9991000294685364 |
| topics[1].domain.id | https://openalex.org/domains/1 |
| topics[1].domain.display_name | Life Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1312 |
| topics[1].subfield.display_name | Molecular Biology |
| topics[1].display_name | Machine Learning in Bioinformatics |
| topics[2].id | https://openalex.org/T10044 |
| topics[2].field.id | https://openalex.org/fields/13 |
| topics[2].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[2].score | 0.9965000152587891 |
| topics[2].domain.id | https://openalex.org/domains/1 |
| topics[2].domain.display_name | Life Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1312 |
| topics[2].subfield.display_name | Molecular Biology |
| topics[2].display_name | Protein Structure and Dynamics |
| is_xpac | False |
| apc_list.value | 3618 |
| apc_list.currency | USD |
| apc_list.value_usd | 3618 |
| apc_paid.value | 3618 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 3618 |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.7524789571762085 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C207060522 |
| concepts[1].level | 4 |
| concepts[1].score | 0.7196992635726929 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q7251473 |
| concepts[1].display_name | Protein function prediction |
| concepts[2].id | https://openalex.org/C132525143 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5601046085357666 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q141488 |
| concepts[2].display_name | Graph |
| concepts[3].id | https://openalex.org/C43126263 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5160638689994812 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q128751 |
| concepts[3].display_name | Source code |
| concepts[4].id | https://openalex.org/C124101348 |
| concepts[4].level | 1 |
| concepts[4].score | 0.4887702167034149 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[4].display_name | Data mining |
| concepts[5].id | https://openalex.org/C2986374874 |
| concepts[5].level | 3 |
| concepts[5].score | 0.4867151081562042 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q8054 |
| concepts[5].display_name | Protein function |
| concepts[6].id | https://openalex.org/C50644808 |
| concepts[6].level | 2 |
| concepts[6].score | 0.43375706672668457 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[6].display_name | Artificial neural network |
| concepts[7].id | https://openalex.org/C154945302 |
| concepts[7].level | 1 |
| concepts[7].score | 0.4247288703918457 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[7].display_name | Artificial intelligence |
| concepts[8].id | https://openalex.org/C2781078984 |
| concepts[8].level | 2 |
| concepts[8].score | 0.41493844985961914 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q107205 |
| concepts[8].display_name | Mega- |
| concepts[9].id | https://openalex.org/C119857082 |
| concepts[9].level | 1 |
| concepts[9].score | 0.37678614258766174 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[9].display_name | Machine learning |
| concepts[10].id | https://openalex.org/C80444323 |
| concepts[10].level | 1 |
| concepts[10].score | 0.2845323383808136 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q2878974 |
| concepts[10].display_name | Theoretical computer science |
| concepts[11].id | https://openalex.org/C86803240 |
| concepts[11].level | 0 |
| concepts[11].score | 0.11195409297943115 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[11].display_name | Biology |
| concepts[12].id | https://openalex.org/C104317684 |
| concepts[12].level | 2 |
| concepts[12].score | 0.0868617594242096 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q7187 |
| concepts[12].display_name | Gene |
| concepts[13].id | https://openalex.org/C121332964 |
| concepts[13].level | 0 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[13].display_name | Physics |
| concepts[14].id | https://openalex.org/C111919701 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q9135 |
| concepts[14].display_name | Operating system |
| concepts[15].id | https://openalex.org/C55493867 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q7094 |
| concepts[15].display_name | Biochemistry |
| concepts[16].id | https://openalex.org/C1276947 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q333 |
| concepts[16].display_name | Astronomy |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.7524789571762085 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/protein-function-prediction |
| keywords[1].score | 0.7196992635726929 |
| keywords[1].display_name | Protein function prediction |
| keywords[2].id | https://openalex.org/keywords/graph |
| keywords[2].score | 0.5601046085357666 |
| keywords[2].display_name | Graph |
| keywords[3].id | https://openalex.org/keywords/source-code |
| keywords[3].score | 0.5160638689994812 |
| keywords[3].display_name | Source code |
| keywords[4].id | https://openalex.org/keywords/data-mining |
| keywords[4].score | 0.4887702167034149 |
| keywords[4].display_name | Data mining |
| keywords[5].id | https://openalex.org/keywords/protein-function |
| keywords[5].score | 0.4867151081562042 |
| keywords[5].display_name | Protein function |
| keywords[6].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[6].score | 0.43375706672668457 |
| keywords[6].display_name | Artificial neural network |
| keywords[7].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[7].score | 0.4247288703918457 |
| keywords[7].display_name | Artificial intelligence |
| keywords[8].id | https://openalex.org/keywords/mega |
| keywords[8].score | 0.41493844985961914 |
| keywords[8].display_name | Mega- |
| keywords[9].id | https://openalex.org/keywords/machine-learning |
| keywords[9].score | 0.37678614258766174 |
| keywords[9].display_name | Machine learning |
| keywords[10].id | https://openalex.org/keywords/theoretical-computer-science |
| keywords[10].score | 0.2845323383808136 |
| keywords[10].display_name | Theoretical computer science |
| keywords[11].id | https://openalex.org/keywords/biology |
| keywords[11].score | 0.11195409297943115 |
| keywords[11].display_name | Biology |
| keywords[12].id | https://openalex.org/keywords/gene |
| keywords[12].score | 0.0868617594242096 |
| keywords[12].display_name | Gene |
| language | en |
| locations[0].id | doi:10.1093/bioinformatics/btaf032 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S52395412 |
| locations[0].source.issn | 1367-4803, 1367-4811 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1367-4803 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Bioinformatics |
| locations[0].source.host_organization | https://openalex.org/P4310311648 |
| locations[0].source.host_organization_name | Oxford University Press |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310311648, https://openalex.org/P4310311647 |
| locations[0].source.host_organization_lineage_names | Oxford University Press, University of Oxford |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://academic.oup.com/bioinformatics/advance-article-pdf/doi/10.1093/bioinformatics/btaf032/61591799/btaf032.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Bioinformatics |
| locations[0].landing_page_url | https://doi.org/10.1093/bioinformatics/btaf032 |
| locations[1].id | pmid:39847542 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Bioinformatics (Oxford, England) |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/39847542 |
| locations[2].id | pmh:oai:pubmedcentral.nih.gov:11810639 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S2764455111 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | PubMed Central |
| locations[2].source.host_organization | https://openalex.org/I1299303238 |
| locations[2].source.host_organization_name | National Institutes of Health |
| locations[2].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[2].license | other-oa |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | Text |
| locations[2].license_id | https://openalex.org/licenses/other-oa |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Bioinformatics |
| locations[2].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/11810639 |
| indexed_in | crossref, doaj, pubmed |
| authorships[0].author.id | https://openalex.org/A5109692762 |
| authorships[0].author.orcid | https://orcid.org/0009-0003-2514-3913 |
| authorships[0].author.display_name | Yujian Lee |
| authorships[0].countries | CN, HK |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I12615008, https://openalex.org/I141568987, https://openalex.org/I25254941 |
| authorships[0].affiliations[0].raw_affiliation_string | Guangdong Provincial Key Laboratory IRADS, Beijing Normal University-Hong Kong Baptist University United International College, Zhuhai, China |
| authorships[0].affiliations[1].institution_ids | https://openalex.org/I12615008, https://openalex.org/I141568987, https://openalex.org/I25254941 |
| authorships[0].affiliations[1].raw_affiliation_string | Department of Computer Science, Beijing Normal University-Hong Kong Baptist University United International College, Zhuhai, China |
| authorships[0].institutions[0].id | https://openalex.org/I25254941 |
| authorships[0].institutions[0].ror | https://ror.org/022k4wk35 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I25254941 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Beijing Normal University |
| authorships[0].institutions[1].id | https://openalex.org/I12615008 |
| authorships[0].institutions[1].ror | https://ror.org/04snvc712 |
| authorships[0].institutions[1].type | education |
| authorships[0].institutions[1].lineage | https://openalex.org/I12615008 |
| authorships[0].institutions[1].country_code | CN |
| authorships[0].institutions[1].display_name | Beijing Normal University - Hong Kong Baptist University United International College |
| authorships[0].institutions[2].id | https://openalex.org/I141568987 |
| authorships[0].institutions[2].ror | https://ror.org/0145fw131 |
| authorships[0].institutions[2].type | education |
| authorships[0].institutions[2].lineage | https://openalex.org/I141568987 |
| authorships[0].institutions[2].country_code | HK |
| authorships[0].institutions[2].display_name | Hong Kong Baptist University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Yujian Lee |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Computer Science, Beijing Normal University-Hong Kong Baptist University United International College, Zhuhai, China, Guangdong Provincial Key Laboratory IRADS, Beijing Normal University-Hong Kong Baptist University United International College, Zhuhai, China |
| authorships[1].author.id | https://openalex.org/A5073018274 |
| authorships[1].author.orcid | https://orcid.org/0009-0000-0848-9814 |
| authorships[1].author.display_name | Peng Gao |
| authorships[1].countries | CN, HK |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I12615008, https://openalex.org/I141568987, https://openalex.org/I25254941 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Computer Science, Beijing Normal University-Hong Kong Baptist University United International College, Zhuhai, China |
| authorships[1].institutions[0].id | https://openalex.org/I25254941 |
| authorships[1].institutions[0].ror | https://ror.org/022k4wk35 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I25254941 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Beijing Normal University |
| authorships[1].institutions[1].id | https://openalex.org/I12615008 |
| authorships[1].institutions[1].ror | https://ror.org/04snvc712 |
| authorships[1].institutions[1].type | education |
| authorships[1].institutions[1].lineage | https://openalex.org/I12615008 |
| authorships[1].institutions[1].country_code | CN |
| authorships[1].institutions[1].display_name | Beijing Normal University - Hong Kong Baptist University United International College |
| authorships[1].institutions[2].id | https://openalex.org/I141568987 |
| authorships[1].institutions[2].ror | https://ror.org/0145fw131 |
| authorships[1].institutions[2].type | education |
| authorships[1].institutions[2].lineage | https://openalex.org/I141568987 |
| authorships[1].institutions[2].country_code | HK |
| authorships[1].institutions[2].display_name | Hong Kong Baptist University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Peng Gao |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Computer Science, Beijing Normal University-Hong Kong Baptist University United International College, Zhuhai, China |
| authorships[2].author.id | https://openalex.org/A5102649934 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Yongqi Xu |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I139024713 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Computer Science and Technology, Guangdong University of Technology, Guangzhou, China |
| authorships[2].institutions[0].id | https://openalex.org/I139024713 |
| authorships[2].institutions[0].ror | https://ror.org/04azbjn80 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I139024713 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Guangdong University of Technology |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Yongqi Xu |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Computer Science and Technology, Guangdong University of Technology, Guangzhou, China |
| authorships[3].author.id | https://openalex.org/A5100348385 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-5294-4773 |
| authorships[3].author.display_name | Ziyang Wang |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I176834541 |
| authorships[3].affiliations[0].raw_affiliation_string | Department of science of Chinese materia medica, Guangdong Medical University, Dongguan, China |
| authorships[3].institutions[0].id | https://openalex.org/I176834541 |
| authorships[3].institutions[0].ror | https://ror.org/04k5rxe29 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I176834541 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Guangdong Medical College |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Ziyang Wang |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Department of science of Chinese materia medica, Guangdong Medical University, Dongguan, China |
| authorships[4].author.id | https://openalex.org/A5083428910 |
| authorships[4].author.orcid | https://orcid.org/0000-0001-6246-6349 |
| authorships[4].author.display_name | Shuai Cheng Li |
| authorships[4].countries | HK |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I168719708 |
| authorships[4].affiliations[0].raw_affiliation_string | Department of of Biomedical Engineering and Computer Science & Computer Science, City University of Hong Kong, Hong Kong, China |
| authorships[4].institutions[0].id | https://openalex.org/I168719708 |
| authorships[4].institutions[0].ror | https://ror.org/03q8dnn23 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I168719708 |
| authorships[4].institutions[0].country_code | HK |
| authorships[4].institutions[0].display_name | City University of Hong Kong |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Shuaicheng Li |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Department of of Biomedical Engineering and Computer Science & Computer Science, City University of Hong Kong, Hong Kong, China |
| authorships[5].author.id | https://openalex.org/A5100685931 |
| authorships[5].author.orcid | https://orcid.org/0000-0001-5795-6722 |
| authorships[5].author.display_name | Jiaxing Chen |
| authorships[5].countries | CN, HK |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I12615008, https://openalex.org/I141568987, https://openalex.org/I25254941 |
| authorships[5].affiliations[0].raw_affiliation_string | Guangdong Provincial Key Laboratory IRADS, Beijing Normal University-Hong Kong Baptist University United International College, Zhuhai, China |
| authorships[5].institutions[0].id | https://openalex.org/I25254941 |
| authorships[5].institutions[0].ror | https://ror.org/022k4wk35 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I25254941 |
| authorships[5].institutions[0].country_code | CN |
| authorships[5].institutions[0].display_name | Beijing Normal University |
| authorships[5].institutions[1].id | https://openalex.org/I12615008 |
| authorships[5].institutions[1].ror | https://ror.org/04snvc712 |
| authorships[5].institutions[1].type | education |
| authorships[5].institutions[1].lineage | https://openalex.org/I12615008 |
| authorships[5].institutions[1].country_code | CN |
| authorships[5].institutions[1].display_name | Beijing Normal University - Hong Kong Baptist University United International College |
| authorships[5].institutions[2].id | https://openalex.org/I141568987 |
| authorships[5].institutions[2].ror | https://ror.org/0145fw131 |
| authorships[5].institutions[2].type | education |
| authorships[5].institutions[2].lineage | https://openalex.org/I141568987 |
| authorships[5].institutions[2].country_code | HK |
| authorships[5].institutions[2].display_name | Hong Kong Baptist University |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Jiaxing Chen |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Guangdong Provincial Key Laboratory IRADS, Beijing Normal University-Hong Kong Baptist University United International College, Zhuhai, China |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://academic.oup.com/bioinformatics/advance-article-pdf/doi/10.1093/bioinformatics/btaf032/61591799/btaf032.pdf |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | MEGA-GO: functions prediction of diverse protein sequence length using Multi-scalE Graph Adaptive neural network |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10887 |
| primary_topic.field.id | https://openalex.org/fields/13 |
| primary_topic.field.display_name | Biochemistry, Genetics and Molecular Biology |
| primary_topic.score | 0.9997000098228455 |
| primary_topic.domain.id | https://openalex.org/domains/1 |
| primary_topic.domain.display_name | Life Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1312 |
| primary_topic.subfield.display_name | Molecular Biology |
| primary_topic.display_name | Bioinformatics and Genomic Networks |
| related_works | https://openalex.org/W2094822546, https://openalex.org/W4388708026, https://openalex.org/W1969080446, https://openalex.org/W3108941781, https://openalex.org/W1578069856, https://openalex.org/W2134206588, https://openalex.org/W2084200259, https://openalex.org/W2065993463, https://openalex.org/W4400576356, https://openalex.org/W2401071219 |
| cited_by_count | 2 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 2 |
| locations_count | 3 |
| best_oa_location.id | doi:10.1093/bioinformatics/btaf032 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S52395412 |
| best_oa_location.source.issn | 1367-4803, 1367-4811 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1367-4803 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Bioinformatics |
| best_oa_location.source.host_organization | https://openalex.org/P4310311648 |
| best_oa_location.source.host_organization_name | Oxford University Press |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310311648, https://openalex.org/P4310311647 |
| best_oa_location.source.host_organization_lineage_names | Oxford University Press, University of Oxford |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://academic.oup.com/bioinformatics/advance-article-pdf/doi/10.1093/bioinformatics/btaf032/61591799/btaf032.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Bioinformatics |
| best_oa_location.landing_page_url | https://doi.org/10.1093/bioinformatics/btaf032 |
| primary_location.id | doi:10.1093/bioinformatics/btaf032 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S52395412 |
| primary_location.source.issn | 1367-4803, 1367-4811 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1367-4803 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Bioinformatics |
| primary_location.source.host_organization | https://openalex.org/P4310311648 |
| primary_location.source.host_organization_name | Oxford University Press |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310311648, https://openalex.org/P4310311647 |
| primary_location.source.host_organization_lineage_names | Oxford University Press, University of Oxford |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://academic.oup.com/bioinformatics/advance-article-pdf/doi/10.1093/bioinformatics/btaf032/61591799/btaf032.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Bioinformatics |
| primary_location.landing_page_url | https://doi.org/10.1093/bioinformatics/btaf032 |
| publication_date | 2025-01-23 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W4393004556, https://openalex.org/W2130479394, https://openalex.org/W4382632527, https://openalex.org/W2472351724, https://openalex.org/W2045204781, https://openalex.org/W6676068534, https://openalex.org/W2900674118, https://openalex.org/W2100383158, https://openalex.org/W1973491891, https://openalex.org/W2159266221, https://openalex.org/W3164046276, https://openalex.org/W4382198799, https://openalex.org/W2015642465, https://openalex.org/W2946165673, https://openalex.org/W6738964360, https://openalex.org/W2995514860, https://openalex.org/W3024191006, https://openalex.org/W1940872118, https://openalex.org/W4387701164, https://openalex.org/W2975578922, https://openalex.org/W2162813650, https://openalex.org/W2615066396, https://openalex.org/W4392907648, https://openalex.org/W2799258971, https://openalex.org/W4382117434, https://openalex.org/W3200997335, https://openalex.org/W2049476357, https://openalex.org/W1980885411, https://openalex.org/W2169689430, https://openalex.org/W3211795435, https://openalex.org/W2949867299, https://openalex.org/W4392244024, https://openalex.org/W6751420435, https://openalex.org/W4387219929, https://openalex.org/W3126958217, https://openalex.org/W3152893301, https://openalex.org/W3128355884, https://openalex.org/W3208773001, https://openalex.org/W3030424116, https://openalex.org/W2789876780 |
| referenced_works_count | 40 |
| abstract_inverted_index.a | 32, 132 |
| abstract_inverted_index.We | 101 |
| abstract_inverted_index.as | 31 |
| abstract_inverted_index.at | 214 |
| abstract_inverted_index.in | 45, 53, 62, 70, 83, 158 |
| abstract_inverted_index.of | 5, 17, 75, 112, 129, 136, 161, 171, 189, 210 |
| abstract_inverted_index.on | 177 |
| abstract_inverted_index.to | 35 |
| abstract_inverted_index.The | 2, 122, 187, 205 |
| abstract_inverted_index.and | 19, 58, 97, 169, 182, 203, 208 |
| abstract_inverted_index.are | 80, 212 |
| abstract_inverted_index.for | 22, 91 |
| abstract_inverted_index.has | 13 |
| abstract_inverted_index.not | 81 |
| abstract_inverted_index.our | 195 |
| abstract_inverted_index.the | 15, 37, 73, 89, 110, 159, 174, 190, 199 |
| abstract_inverted_index.Gene | 162 |
| abstract_inverted_index.This | 87 |
| abstract_inverted_index.area | 172 |
| abstract_inverted_index.code | 207 |
| abstract_inverted_index.data | 209 |
| abstract_inverted_index.face | 51 |
| abstract_inverted_index.from | 119 |
| abstract_inverted_index.have | 29, 68 |
| abstract_inverted_index.more | 133 |
| abstract_inverted_index.need | 90 |
| abstract_inverted_index.rest | 188 |
| abstract_inverted_index.term | 164 |
| abstract_inverted_index.that | 79, 150, 194 |
| abstract_inverted_index.44.6% | 170 |
| abstract_inverted_index.Graph | 104 |
| abstract_inverted_index.curve | 176 |
| abstract_inverted_index.data. | 99, 146 |
| abstract_inverted_index.graph | 48, 124, 137 |
| abstract_inverted_index.model | 196 |
| abstract_inverted_index.newly | 76 |
| abstract_inverted_index.novel | 92 |
| abstract_inverted_index.under | 173 |
| abstract_inverted_index.33.4%, | 167 |
| abstract_inverted_index.68.9%, | 168 |
| abstract_inverted_index.length | 117 |
| abstract_inverted_index.making | 42 |
| abstract_inverted_index.models | 28, 67, 157 |
| abstract_inverted_index.neural | 49, 106, 126 |
| abstract_inverted_index.reveal | 193 |
| abstract_inverted_index.source | 206 |
| abstract_inverted_index.unique | 123 |
| abstract_inverted_index.within | 144 |
| abstract_inverted_index.MEGA-GO | 130, 151, 211 |
| abstract_inverted_index.Results | 100 |
| abstract_inverted_index.despite | 41 |
| abstract_inverted_index.diverse | 114 |
| abstract_inverted_index.emerged | 30 |
| abstract_inverted_index.enables | 131 |
| abstract_inverted_index.graphs. | 64 |
| abstract_inverted_index.methods | 21 |
| abstract_inverted_index.network | 107, 127 |
| abstract_inverted_index.nuanced | 134 |
| abstract_inverted_index.protein | 7, 24, 46, 63, 84, 95, 115, 154 |
| abstract_inverted_index.results | 148, 192 |
| abstract_inverted_index.scales. | 121 |
| abstract_inverted_index.through | 9 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.Adaptive | 105 |
| abstract_inverted_index.However, | 40 |
| abstract_inverted_index.Ontology | 163 |
| abstract_inverted_index.accuracy | 160 |
| abstract_inverted_index.accurate | 20 |
| abstract_inverted_index.adaptive | 125 |
| abstract_inverted_index.advanced | 10 |
| abstract_inverted_index.cellular | 183 |
| abstract_inverted_index.critical | 60 |
| abstract_inverted_index.domains, | 185 |
| abstract_inverted_index.existing | 66 |
| abstract_inverted_index.expedite | 36 |
| abstract_inverted_index.features | 118 |
| abstract_inverted_index.function | 74, 155 |
| abstract_inverted_index.included | 82 |
| abstract_inverted_index.methods. | 201 |
| abstract_inverted_index.multiple | 120 |
| abstract_inverted_index.networks | 50 |
| abstract_inverted_index.process, | 179 |
| abstract_inverted_index.process. | 39 |
| abstract_inverted_index.progress | 44 |
| abstract_inverted_index.proteins | 78 |
| abstract_inverted_index.residues | 61 |
| abstract_inverted_index.sequence | 98, 116 |
| abstract_inverted_index.solution | 34 |
| abstract_inverted_index.yielding | 166 |
| abstract_inverted_index.available | 213 |
| abstract_inverted_index.capturing | 54, 113, 141 |
| abstract_inverted_index.component | 184 |
| abstract_inverted_index.efficient | 18 |
| abstract_inverted_index.features, | 139 |
| abstract_inverted_index.function, | 181 |
| abstract_inverted_index.function. | 25 |
| abstract_inverted_index.intricate | 142 |
| abstract_inverted_index.introduce | 102 |
| abstract_inverted_index.molecular | 180 |
| abstract_inverted_index.networks. | 86 |
| abstract_inverted_index.promising | 33 |
| abstract_inverted_index.research, | 47 |
| abstract_inverted_index.sequenced | 77 |
| abstract_inverted_index.sequences | 8 |
| abstract_inverted_index.structure | 96, 138 |
| abstract_inverted_index.surpasses | 198 |
| abstract_inverted_index.(MEGA-GO), | 108 |
| abstract_inverted_index.Motivation | 1 |
| abstract_inverted_index.annotation | 38 |
| abstract_inverted_index.approaches | 93 |
| abstract_inverted_index.biological | 145, 178 |
| abstract_inverted_index.capability | 111 |
| abstract_inverted_index.challenges | 52 |
| abstract_inverted_index.extraction | 135 |
| abstract_inverted_index.highlights | 88 |
| abstract_inverted_index.increasing | 3 |
| abstract_inverted_index.long-range | 55 |
| abstract_inverted_index.mainstream | 153 |
| abstract_inverted_index.predicting | 23, 72 |
| abstract_inverted_index.prediction | 27, 156 |
| abstract_inverted_index.sequencing | 11 |
| abstract_inverted_index.structural | 56 |
| abstract_inverted_index.Multi-scalE | 103 |
| abstract_inverted_index.demonstrate | 149 |
| abstract_inverted_index.development | 16 |
| abstract_inverted_index.effectively | 71, 140 |
| abstract_inverted_index.identifying | 59 |
| abstract_inverted_index.integrating | 94 |
| abstract_inverted_index.interaction | 85 |
| abstract_inverted_index.large-scale | 6 |
| abstract_inverted_index.limitations | 69 |
| abstract_inverted_index.outperforms | 152 |
| abstract_inverted_index.significant | 43 |
| abstract_inverted_index.Availability | 202 |
| abstract_inverted_index.Experimental | 147 |
| abstract_inverted_index.Furthermore, | 65 |
| abstract_inverted_index.architecture | 128 |
| abstract_inverted_index.consistently | 197 |
| abstract_inverted_index.correlations | 57 |
| abstract_inverted_index.experimental | 191 |
| abstract_inverted_index.highlighting | 109 |
| abstract_inverted_index.necessitated | 14 |
| abstract_inverted_index.technologies | 12 |
| abstract_inverted_index.Computational | 26 |
| abstract_inverted_index.accessibility | 4 |
| abstract_inverted_index.relationships | 143 |
| abstract_inverted_index.respectively. | 186 |
| abstract_inverted_index.implementation | 204 |
| abstract_inverted_index.classification, | 165 |
| abstract_inverted_index.precision-recall | 175 |
| abstract_inverted_index.state-of-the-art | 200 |
| abstract_inverted_index.https://github.com/Cheliosoops/MEGA-GO. | 215 |
| cited_by_percentile_year.max | 97 |
| cited_by_percentile_year.min | 95 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 6 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/9 |
| sustainable_development_goals[0].score | 0.4399999976158142 |
| sustainable_development_goals[0].display_name | Industry, innovation and infrastructure |
| citation_normalized_percentile.value | 0.86880067 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |