MemoryBank: Enhancing Large Language Models with Long-Term Memory Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.1609/aaai.v38i17.29946
Large Language Models (LLMs) have drastically reshaped our interactions with artificial intelligence (AI) systems, showcasing impressive performance across an extensive array of tasks. Despite this, a notable hindrance remains—the deficiency of a long-term memory mechanism within these models. This shortfall becomes increasingly evident in situations demanding sustained interaction, such as personal companion systems, psychological counseling, and secretarial assistance. Recognizing the necessity for long-term memory, we propose MemoryBank, a novel memory mechanism tailored for LLMs. MemoryBank enables the models to summon relevant memories, continually evolve through continuous memory updates, comprehend, and adapt to a user's personality over time by synthesizing information from previous interactions. To mimic anthropomorphic behaviors and selectively preserve memory, MemoryBank incorporates a memory updating mechanism, inspired by the Ebbinghaus Forgetting Curve theory. This mechanism permits the AI to forget and reinforce memory based on time elapsed and the relative significance of the memory, thereby offering a more human-like memory mechanism and enriched user experience. MemoryBank is versatile in accommodating both closed-source models like ChatGPT and open-source models such as ChatGLM. To validate MemoryBank's effectiveness, we exemplify its application through the creation of an LLM-based chatbot named SiliconFriend in a long-term AI Companion scenario. Further tuned with psychological dialog data, SiliconFriend displays heightened empathy and discernment in its interactions. Experiment involves both qualitative analysis with real-world user dialogs and quantitative analysis with simulated dialogs. In the latter, ChatGPT acts as multiple users with diverse characteristics and generates long-term dialog contexts covering a wide array of topics. The results of our analysis reveal that SiliconFriend, equipped with MemoryBank, exhibits a strong capability for long-term companionship as it can provide emphatic response, recall relevant memories and understand user personality.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1609/aaai.v38i17.29946
- https://ojs.aaai.org/index.php/AAAI/article/download/29946/31654
- OA Status
- diamond
- Cited By
- 85
- References
- 16
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4393147158
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4393147158Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1609/aaai.v38i17.29946Digital Object Identifier
- Title
-
MemoryBank: Enhancing Large Language Models with Long-Term MemoryWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-03-24Full publication date if available
- Authors
-
Wanjun Zhong, Lianghong Guo, Qiqi Gao, He Ye, Yanlin WangList of authors in order
- Landing page
-
https://doi.org/10.1609/aaai.v38i17.29946Publisher landing page
- PDF URL
-
https://ojs.aaai.org/index.php/AAAI/article/download/29946/31654Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://ojs.aaai.org/index.php/AAAI/article/download/29946/31654Direct OA link when available
- Concepts
-
Term (time), Computer science, Long-term memory, Psychology, Neuroscience, Cognition, Physics, AstronomyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
85Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 64, 2024: 21Per-year citation counts (last 5 years)
- References (count)
-
16Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4393147158 |
|---|---|
| doi | https://doi.org/10.1609/aaai.v38i17.29946 |
| ids.doi | https://doi.org/10.1609/aaai.v38i17.29946 |
| ids.openalex | https://openalex.org/W4393147158 |
| fwci | 20.61390158 |
| type | article |
| title | MemoryBank: Enhancing Large Language Models with Long-Term Memory |
| biblio.issue | 17 |
| biblio.volume | 38 |
| biblio.last_page | 19731 |
| biblio.first_page | 19724 |
| topics[0].id | https://openalex.org/T10028 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9606999754905701 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Topic Modeling |
| topics[1].id | https://openalex.org/T10181 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9352999925613403 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Natural Language Processing Techniques |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C61797465 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7021706104278564 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1188986 |
| concepts[0].display_name | Term (time) |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.4881313741207123 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C24590219 |
| concepts[2].level | 3 |
| concepts[2].score | 0.4813547730445862 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q18601 |
| concepts[2].display_name | Long-term memory |
| concepts[3].id | https://openalex.org/C15744967 |
| concepts[3].level | 0 |
| concepts[3].score | 0.3120175898075104 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q9418 |
| concepts[3].display_name | Psychology |
| concepts[4].id | https://openalex.org/C169760540 |
| concepts[4].level | 1 |
| concepts[4].score | 0.1047375500202179 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q207011 |
| concepts[4].display_name | Neuroscience |
| concepts[5].id | https://openalex.org/C169900460 |
| concepts[5].level | 2 |
| concepts[5].score | 0.09350946545600891 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q2200417 |
| concepts[5].display_name | Cognition |
| concepts[6].id | https://openalex.org/C121332964 |
| concepts[6].level | 0 |
| concepts[6].score | 0.07529336214065552 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[6].display_name | Physics |
| concepts[7].id | https://openalex.org/C1276947 |
| concepts[7].level | 1 |
| concepts[7].score | 0.05946961045265198 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q333 |
| concepts[7].display_name | Astronomy |
| keywords[0].id | https://openalex.org/keywords/term |
| keywords[0].score | 0.7021706104278564 |
| keywords[0].display_name | Term (time) |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.4881313741207123 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/long-term-memory |
| keywords[2].score | 0.4813547730445862 |
| keywords[2].display_name | Long-term memory |
| keywords[3].id | https://openalex.org/keywords/psychology |
| keywords[3].score | 0.3120175898075104 |
| keywords[3].display_name | Psychology |
| keywords[4].id | https://openalex.org/keywords/neuroscience |
| keywords[4].score | 0.1047375500202179 |
| keywords[4].display_name | Neuroscience |
| keywords[5].id | https://openalex.org/keywords/cognition |
| keywords[5].score | 0.09350946545600891 |
| keywords[5].display_name | Cognition |
| keywords[6].id | https://openalex.org/keywords/physics |
| keywords[6].score | 0.07529336214065552 |
| keywords[6].display_name | Physics |
| keywords[7].id | https://openalex.org/keywords/astronomy |
| keywords[7].score | 0.05946961045265198 |
| keywords[7].display_name | Astronomy |
| language | en |
| locations[0].id | doi:10.1609/aaai.v38i17.29946 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210191458 |
| locations[0].source.issn | 2159-5399, 2374-3468 |
| locations[0].source.type | conference |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2159-5399 |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Proceedings of the AAAI Conference on Artificial Intelligence |
| locations[0].source.host_organization | https://openalex.org/P4310320058 |
| locations[0].source.host_organization_name | Association for the Advancement of Artificial Intelligence |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320058 |
| locations[0].source.host_organization_lineage_names | Association for the Advancement of Artificial Intelligence |
| locations[0].license | |
| locations[0].pdf_url | https://ojs.aaai.org/index.php/AAAI/article/download/29946/31654 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Proceedings of the AAAI Conference on Artificial Intelligence |
| locations[0].landing_page_url | https://doi.org/10.1609/aaai.v38i17.29946 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5019101763 |
| authorships[0].author.orcid | https://orcid.org/0009-0007-2236-228X |
| authorships[0].author.display_name | Wanjun Zhong |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I157773358 |
| authorships[0].affiliations[0].raw_affiliation_string | Sun Yat-sen University |
| authorships[0].institutions[0].id | https://openalex.org/I157773358 |
| authorships[0].institutions[0].ror | https://ror.org/0064kty71 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I157773358 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Sun Yat-sen University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Wanjun Zhong |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Sun Yat-sen University |
| authorships[1].author.id | https://openalex.org/A5114107593 |
| authorships[1].author.orcid | https://orcid.org/0009-0001-0943-5049 |
| authorships[1].author.display_name | Lianghong Guo |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I157773358 |
| authorships[1].affiliations[0].raw_affiliation_string | Sun Yat-sen University |
| authorships[1].institutions[0].id | https://openalex.org/I157773358 |
| authorships[1].institutions[0].ror | https://ror.org/0064kty71 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I157773358 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Sun Yat-sen University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Lianghong Guo |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Sun Yat-sen University |
| authorships[2].author.id | https://openalex.org/A5103229423 |
| authorships[2].author.orcid | https://orcid.org/0009-0000-7423-8845 |
| authorships[2].author.display_name | Qiqi Gao |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I204983213 |
| authorships[2].affiliations[0].raw_affiliation_string | Harbin Institute of Technology |
| authorships[2].institutions[0].id | https://openalex.org/I204983213 |
| authorships[2].institutions[0].ror | https://ror.org/01yqg2h08 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I204983213 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Harbin Institute of Technology |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Qiqi Gao |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Harbin Institute of Technology |
| authorships[3].author.id | https://openalex.org/A5101610258 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-4807-2110 |
| authorships[3].author.display_name | He Ye |
| authorships[3].countries | SE |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I86987016 |
| authorships[3].affiliations[0].raw_affiliation_string | KTH Royal Institute of Technology |
| authorships[3].institutions[0].id | https://openalex.org/I86987016 |
| authorships[3].institutions[0].ror | https://ror.org/026vcq606 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I86987016 |
| authorships[3].institutions[0].country_code | SE |
| authorships[3].institutions[0].display_name | KTH Royal Institute of Technology |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | He Ye |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | KTH Royal Institute of Technology |
| authorships[4].author.id | https://openalex.org/A5100350708 |
| authorships[4].author.orcid | https://orcid.org/0000-0001-7761-7269 |
| authorships[4].author.display_name | Yanlin Wang |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I157773358 |
| authorships[4].affiliations[0].raw_affiliation_string | Sun Yat-sen University |
| authorships[4].institutions[0].id | https://openalex.org/I157773358 |
| authorships[4].institutions[0].ror | https://ror.org/0064kty71 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I157773358 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | Sun Yat-sen University |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Yanlin Wang |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Sun Yat-sen University |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://ojs.aaai.org/index.php/AAAI/article/download/29946/31654 |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | MemoryBank: Enhancing Large Language Models with Long-Term Memory |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10028 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9606999754905701 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Topic Modeling |
| related_works | https://openalex.org/W2748952813, https://openalex.org/W2390279801, https://openalex.org/W2358668433, https://openalex.org/W2376932109, https://openalex.org/W2001405890, https://openalex.org/W2382290278, https://openalex.org/W2478288626, https://openalex.org/W2724703943, https://openalex.org/W2963503898, https://openalex.org/W1494049244 |
| cited_by_count | 85 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 64 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 21 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1609/aaai.v38i17.29946 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210191458 |
| best_oa_location.source.issn | 2159-5399, 2374-3468 |
| best_oa_location.source.type | conference |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2159-5399 |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Proceedings of the AAAI Conference on Artificial Intelligence |
| best_oa_location.source.host_organization | https://openalex.org/P4310320058 |
| best_oa_location.source.host_organization_name | Association for the Advancement of Artificial Intelligence |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320058 |
| best_oa_location.source.host_organization_lineage_names | Association for the Advancement of Artificial Intelligence |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://ojs.aaai.org/index.php/AAAI/article/download/29946/31654 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Proceedings of the AAAI Conference on Artificial Intelligence |
| best_oa_location.landing_page_url | https://doi.org/10.1609/aaai.v38i17.29946 |
| primary_location.id | doi:10.1609/aaai.v38i17.29946 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210191458 |
| primary_location.source.issn | 2159-5399, 2374-3468 |
| primary_location.source.type | conference |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2159-5399 |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Proceedings of the AAAI Conference on Artificial Intelligence |
| primary_location.source.host_organization | https://openalex.org/P4310320058 |
| primary_location.source.host_organization_name | Association for the Advancement of Artificial Intelligence |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320058 |
| primary_location.source.host_organization_lineage_names | Association for the Advancement of Artificial Intelligence |
| primary_location.license | |
| primary_location.pdf_url | https://ojs.aaai.org/index.php/AAAI/article/download/29946/31654 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Proceedings of the AAAI Conference on Artificial Intelligence |
| primary_location.landing_page_url | https://doi.org/10.1609/aaai.v38i17.29946 |
| publication_date | 2024-03-24 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W6734897383, https://openalex.org/W2782096898, https://openalex.org/W3008374555, https://openalex.org/W2998702515, https://openalex.org/W4362515116, https://openalex.org/W3099700870, https://openalex.org/W4327810158, https://openalex.org/W4303443398, https://openalex.org/W4293320163, https://openalex.org/W4322718191, https://openalex.org/W4307079201, https://openalex.org/W3168867926, https://openalex.org/W4224308101, https://openalex.org/W4285300946, https://openalex.org/W4292779060, https://openalex.org/W4303633609 |
| referenced_works_count | 16 |
| abstract_inverted_index.a | 25, 31, 67, 92, 113, 147, 190, 242, 259 |
| abstract_inverted_index.AI | 128, 192 |
| abstract_inverted_index.In | 225 |
| abstract_inverted_index.To | 103, 172 |
| abstract_inverted_index.an | 18, 184 |
| abstract_inverted_index.as | 49, 170, 230, 265 |
| abstract_inverted_index.by | 97, 118 |
| abstract_inverted_index.in | 43, 159, 189, 207 |
| abstract_inverted_index.is | 157 |
| abstract_inverted_index.it | 266 |
| abstract_inverted_index.of | 21, 30, 142, 183, 245, 249 |
| abstract_inverted_index.on | 135 |
| abstract_inverted_index.to | 78, 91, 129 |
| abstract_inverted_index.we | 64, 176 |
| abstract_inverted_index.The | 247 |
| abstract_inverted_index.and | 55, 89, 107, 131, 138, 152, 166, 205, 219, 236, 274 |
| abstract_inverted_index.can | 267 |
| abstract_inverted_index.for | 61, 72, 262 |
| abstract_inverted_index.its | 178, 208 |
| abstract_inverted_index.our | 7, 250 |
| abstract_inverted_index.the | 59, 76, 119, 127, 139, 143, 181, 226 |
| abstract_inverted_index.(AI) | 12 |
| abstract_inverted_index.This | 38, 124 |
| abstract_inverted_index.acts | 229 |
| abstract_inverted_index.both | 161, 212 |
| abstract_inverted_index.from | 100 |
| abstract_inverted_index.have | 4 |
| abstract_inverted_index.like | 164 |
| abstract_inverted_index.more | 148 |
| abstract_inverted_index.over | 95 |
| abstract_inverted_index.such | 48, 169 |
| abstract_inverted_index.that | 253 |
| abstract_inverted_index.time | 96, 136 |
| abstract_inverted_index.user | 154, 217, 276 |
| abstract_inverted_index.wide | 243 |
| abstract_inverted_index.with | 9, 197, 215, 222, 233, 256 |
| abstract_inverted_index.Curve | 122 |
| abstract_inverted_index.LLMs. | 73 |
| abstract_inverted_index.Large | 0 |
| abstract_inverted_index.adapt | 90 |
| abstract_inverted_index.array | 20, 244 |
| abstract_inverted_index.based | 134 |
| abstract_inverted_index.data, | 200 |
| abstract_inverted_index.mimic | 104 |
| abstract_inverted_index.named | 187 |
| abstract_inverted_index.novel | 68 |
| abstract_inverted_index.these | 36 |
| abstract_inverted_index.this, | 24 |
| abstract_inverted_index.tuned | 196 |
| abstract_inverted_index.users | 232 |
| abstract_inverted_index.(LLMs) | 3 |
| abstract_inverted_index.Models | 2 |
| abstract_inverted_index.across | 17 |
| abstract_inverted_index.dialog | 199, 239 |
| abstract_inverted_index.evolve | 83 |
| abstract_inverted_index.forget | 130 |
| abstract_inverted_index.memory | 33, 69, 86, 114, 133, 150 |
| abstract_inverted_index.models | 77, 163, 168 |
| abstract_inverted_index.recall | 271 |
| abstract_inverted_index.reveal | 252 |
| abstract_inverted_index.strong | 260 |
| abstract_inverted_index.summon | 79 |
| abstract_inverted_index.tasks. | 22 |
| abstract_inverted_index.user's | 93 |
| abstract_inverted_index.within | 35 |
| abstract_inverted_index.ChatGPT | 165, 228 |
| abstract_inverted_index.Despite | 23 |
| abstract_inverted_index.Further | 195 |
| abstract_inverted_index.becomes | 40 |
| abstract_inverted_index.chatbot | 186 |
| abstract_inverted_index.dialogs | 218 |
| abstract_inverted_index.diverse | 234 |
| abstract_inverted_index.elapsed | 137 |
| abstract_inverted_index.empathy | 204 |
| abstract_inverted_index.enables | 75 |
| abstract_inverted_index.evident | 42 |
| abstract_inverted_index.latter, | 227 |
| abstract_inverted_index.memory, | 63, 110, 144 |
| abstract_inverted_index.models. | 37 |
| abstract_inverted_index.notable | 26 |
| abstract_inverted_index.permits | 126 |
| abstract_inverted_index.propose | 65 |
| abstract_inverted_index.provide | 268 |
| abstract_inverted_index.results | 248 |
| abstract_inverted_index.theory. | 123 |
| abstract_inverted_index.thereby | 145 |
| abstract_inverted_index.through | 84, 180 |
| abstract_inverted_index.topics. | 246 |
| abstract_inverted_index.ChatGLM. | 171 |
| abstract_inverted_index.Language | 1 |
| abstract_inverted_index.analysis | 214, 221, 251 |
| abstract_inverted_index.contexts | 240 |
| abstract_inverted_index.covering | 241 |
| abstract_inverted_index.creation | 182 |
| abstract_inverted_index.dialogs. | 224 |
| abstract_inverted_index.displays | 202 |
| abstract_inverted_index.emphatic | 269 |
| abstract_inverted_index.enriched | 153 |
| abstract_inverted_index.equipped | 255 |
| abstract_inverted_index.exhibits | 258 |
| abstract_inverted_index.inspired | 117 |
| abstract_inverted_index.involves | 211 |
| abstract_inverted_index.memories | 273 |
| abstract_inverted_index.multiple | 231 |
| abstract_inverted_index.offering | 146 |
| abstract_inverted_index.personal | 50 |
| abstract_inverted_index.preserve | 109 |
| abstract_inverted_index.previous | 101 |
| abstract_inverted_index.relative | 140 |
| abstract_inverted_index.relevant | 80, 272 |
| abstract_inverted_index.reshaped | 6 |
| abstract_inverted_index.systems, | 13, 52 |
| abstract_inverted_index.tailored | 71 |
| abstract_inverted_index.updates, | 87 |
| abstract_inverted_index.updating | 115 |
| abstract_inverted_index.validate | 173 |
| abstract_inverted_index.Companion | 193 |
| abstract_inverted_index.LLM-based | 185 |
| abstract_inverted_index.behaviors | 106 |
| abstract_inverted_index.companion | 51 |
| abstract_inverted_index.demanding | 45 |
| abstract_inverted_index.exemplify | 177 |
| abstract_inverted_index.extensive | 19 |
| abstract_inverted_index.generates | 237 |
| abstract_inverted_index.hindrance | 27 |
| abstract_inverted_index.long-term | 32, 62, 191, 238, 263 |
| abstract_inverted_index.mechanism | 34, 70, 125, 151 |
| abstract_inverted_index.memories, | 81 |
| abstract_inverted_index.necessity | 60 |
| abstract_inverted_index.reinforce | 132 |
| abstract_inverted_index.response, | 270 |
| abstract_inverted_index.scenario. | 194 |
| abstract_inverted_index.shortfall | 39 |
| abstract_inverted_index.simulated | 223 |
| abstract_inverted_index.sustained | 46 |
| abstract_inverted_index.versatile | 158 |
| abstract_inverted_index.Ebbinghaus | 120 |
| abstract_inverted_index.Experiment | 210 |
| abstract_inverted_index.Forgetting | 121 |
| abstract_inverted_index.MemoryBank | 74, 111, 156 |
| abstract_inverted_index.artificial | 10 |
| abstract_inverted_index.capability | 261 |
| abstract_inverted_index.continuous | 85 |
| abstract_inverted_index.deficiency | 29 |
| abstract_inverted_index.heightened | 203 |
| abstract_inverted_index.human-like | 149 |
| abstract_inverted_index.impressive | 15 |
| abstract_inverted_index.mechanism, | 116 |
| abstract_inverted_index.real-world | 216 |
| abstract_inverted_index.showcasing | 14 |
| abstract_inverted_index.situations | 44 |
| abstract_inverted_index.understand | 275 |
| abstract_inverted_index.MemoryBank, | 66, 257 |
| abstract_inverted_index.Recognizing | 58 |
| abstract_inverted_index.application | 179 |
| abstract_inverted_index.assistance. | 57 |
| abstract_inverted_index.comprehend, | 88 |
| abstract_inverted_index.continually | 82 |
| abstract_inverted_index.counseling, | 54 |
| abstract_inverted_index.discernment | 206 |
| abstract_inverted_index.drastically | 5 |
| abstract_inverted_index.experience. | 155 |
| abstract_inverted_index.information | 99 |
| abstract_inverted_index.open-source | 167 |
| abstract_inverted_index.performance | 16 |
| abstract_inverted_index.personality | 94 |
| abstract_inverted_index.qualitative | 213 |
| abstract_inverted_index.secretarial | 56 |
| abstract_inverted_index.selectively | 108 |
| abstract_inverted_index.MemoryBank's | 174 |
| abstract_inverted_index.incorporates | 112 |
| abstract_inverted_index.increasingly | 41 |
| abstract_inverted_index.intelligence | 11 |
| abstract_inverted_index.interaction, | 47 |
| abstract_inverted_index.interactions | 8 |
| abstract_inverted_index.personality. | 277 |
| abstract_inverted_index.quantitative | 220 |
| abstract_inverted_index.significance | 141 |
| abstract_inverted_index.synthesizing | 98 |
| abstract_inverted_index.SiliconFriend | 188, 201 |
| abstract_inverted_index.accommodating | 160 |
| abstract_inverted_index.closed-source | 162 |
| abstract_inverted_index.companionship | 264 |
| abstract_inverted_index.interactions. | 102, 209 |
| abstract_inverted_index.psychological | 53, 198 |
| abstract_inverted_index.remains—the | 28 |
| abstract_inverted_index.SiliconFriend, | 254 |
| abstract_inverted_index.effectiveness, | 175 |
| abstract_inverted_index.anthropomorphic | 105 |
| abstract_inverted_index.characteristics | 235 |
| cited_by_percentile_year.max | 100 |
| cited_by_percentile_year.min | 99 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 5 |
| citation_normalized_percentile.value | 0.99630996 |
| citation_normalized_percentile.is_in_top_1_percent | True |
| citation_normalized_percentile.is_in_top_10_percent | True |