Memristive-synapse spiking neural networks based on single-electron transistors Article Swipe
YOU?
·
· 2019
· Open Access
·
· DOI: https://doi.org/10.1007/s10825-019-01437-w
In recent decades, with the rapid development of artificial intelligence technologies and bionic engineering, the spiking neural network (SNN), inspired by biological neural systems, has become one of the most promising research topics, enjoying numerous applications in various fields. Due to its complex structure, the simplification of SNN circuits requires serious consideration, along with their power consumption and space occupation. In this regard, the use of SSN circuits based on single-electron transistors (SETs) and modified memristor synapses is proposed herein. A prominent feature of SETs is Coulomb oscillation, which has characteristics similar to the pulses produced by spiking neurons. Here, a novel window function is used in the memristor model to improve the linearity of the memristor and solve the boundary and terminal lock problems. In addition, we modify the memristor synapse to achieve better weight control. Finally, to test the SNN constructed with SETs and memristor synapses, an associative memory learning process, including memory construction, loss, reconstruction, and change, is implemented in the circuit using the PSPICE simulator.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1007/s10825-019-01437-w
- https://link.springer.com/content/pdf/10.1007/s10825-019-01437-w.pdf
- OA Status
- hybrid
- Cited By
- 9
- References
- 51
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W2998659810
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W2998659810Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1007/s10825-019-01437-wDigital Object Identifier
- Title
-
Memristive-synapse spiking neural networks based on single-electron transistorsWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2019Year of publication
- Publication date
-
2019-12-26Full publication date if available
- Authors
-
Keliu Long, Xiaohong ZhangList of authors in order
- Landing page
-
https://doi.org/10.1007/s10825-019-01437-wPublisher landing page
- PDF URL
-
https://link.springer.com/content/pdf/10.1007/s10825-019-01437-w.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
hybridOpen access status per OpenAlex
- OA URL
-
https://link.springer.com/content/pdf/10.1007/s10825-019-01437-w.pdfDirect OA link when available
- Concepts
-
Memristor, Computer science, Artificial neural network, Transistor, Memistor, Content-addressable memory, Physical neural network, Spiking neural network, Window function, Electronic circuit, Artificial intelligence, Electronic engineering, Resistive random-access memory, Voltage, Electrical engineering, Recurrent neural network, Types of artificial neural networks, Engineering, Telecommunications, Spectral densityTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
9Total citation count in OpenAlex
- Citations by year (recent)
-
2023: 3, 2022: 1, 2021: 3, 2020: 2Per-year citation counts (last 5 years)
- References (count)
-
51Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W2998659810 |
|---|---|
| doi | https://doi.org/10.1007/s10825-019-01437-w |
| ids.doi | https://doi.org/10.1007/s10825-019-01437-w |
| ids.mag | 2998659810 |
| ids.openalex | https://openalex.org/W2998659810 |
| fwci | 0.68311424 |
| type | article |
| title | Memristive-synapse spiking neural networks based on single-electron transistors |
| awards[0].id | https://openalex.org/G6618104124 |
| awards[0].funder_id | https://openalex.org/F4320322665 |
| awards[0].display_name | |
| awards[0].funder_award_id | 20161BAB206145 |
| awards[0].funder_display_name | Natural Science Foundation of Jiangxi Province |
| awards[1].id | https://openalex.org/G888774917 |
| awards[1].funder_id | https://openalex.org/F4320321001 |
| awards[1].display_name | |
| awards[1].funder_award_id | 61763017 |
| awards[1].funder_display_name | National Natural Science Foundation of China |
| awards[2].id | https://openalex.org/G1792996482 |
| awards[2].funder_id | https://openalex.org/F4320322665 |
| awards[2].display_name | |
| awards[2].funder_award_id | 20161BAB202053 |
| awards[2].funder_display_name | Natural Science Foundation of Jiangxi Province |
| awards[3].id | https://openalex.org/G6715357445 |
| awards[3].funder_id | https://openalex.org/F4320321001 |
| awards[3].display_name | |
| awards[3].funder_award_id | 51665019 |
| awards[3].funder_display_name | National Natural Science Foundation of China |
| biblio.issue | 1 |
| biblio.volume | 19 |
| biblio.last_page | 450 |
| biblio.first_page | 435 |
| topics[0].id | https://openalex.org/T10502 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 1.0 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2208 |
| topics[0].subfield.display_name | Electrical and Electronic Engineering |
| topics[0].display_name | Advanced Memory and Neural Computing |
| topics[1].id | https://openalex.org/T10581 |
| topics[1].field.id | https://openalex.org/fields/28 |
| topics[1].field.display_name | Neuroscience |
| topics[1].score | 0.9986000061035156 |
| topics[1].domain.id | https://openalex.org/domains/1 |
| topics[1].domain.display_name | Life Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2805 |
| topics[1].subfield.display_name | Cognitive Neuroscience |
| topics[1].display_name | Neural dynamics and brain function |
| topics[2].id | https://openalex.org/T12808 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9986000061035156 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2208 |
| topics[2].subfield.display_name | Electrical and Electronic Engineering |
| topics[2].display_name | Ferroelectric and Negative Capacitance Devices |
| funders[0].id | https://openalex.org/F4320321001 |
| funders[0].ror | https://ror.org/01h0zpd94 |
| funders[0].display_name | National Natural Science Foundation of China |
| funders[1].id | https://openalex.org/F4320322665 |
| funders[1].ror | |
| funders[1].display_name | Natural Science Foundation of Jiangxi Province |
| is_xpac | False |
| apc_list.value | 2390 |
| apc_list.currency | EUR |
| apc_list.value_usd | 2990 |
| apc_paid.value | 2390 |
| apc_paid.currency | EUR |
| apc_paid.value_usd | 2990 |
| concepts[0].id | https://openalex.org/C150072547 |
| concepts[0].level | 2 |
| concepts[0].score | 0.903207540512085 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q212923 |
| concepts[0].display_name | Memristor |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.7212654948234558 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C50644808 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5994633436203003 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[2].display_name | Artificial neural network |
| concepts[3].id | https://openalex.org/C172385210 |
| concepts[3].level | 3 |
| concepts[3].score | 0.5762388110160828 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q5339 |
| concepts[3].display_name | Transistor |
| concepts[4].id | https://openalex.org/C1895703 |
| concepts[4].level | 4 |
| concepts[4].score | 0.5496557354927063 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q6034938 |
| concepts[4].display_name | Memistor |
| concepts[5].id | https://openalex.org/C53442348 |
| concepts[5].level | 3 |
| concepts[5].score | 0.5484529137611389 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q745101 |
| concepts[5].display_name | Content-addressable memory |
| concepts[6].id | https://openalex.org/C33766855 |
| concepts[6].level | 5 |
| concepts[6].score | 0.5283836722373962 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q7189618 |
| concepts[6].display_name | Physical neural network |
| concepts[7].id | https://openalex.org/C11731999 |
| concepts[7].level | 3 |
| concepts[7].score | 0.5226592421531677 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q9067355 |
| concepts[7].display_name | Spiking neural network |
| concepts[8].id | https://openalex.org/C140101238 |
| concepts[8].level | 3 |
| concepts[8].score | 0.4712142050266266 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q1404885 |
| concepts[8].display_name | Window function |
| concepts[9].id | https://openalex.org/C134146338 |
| concepts[9].level | 2 |
| concepts[9].score | 0.44875770807266235 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q1815901 |
| concepts[9].display_name | Electronic circuit |
| concepts[10].id | https://openalex.org/C154945302 |
| concepts[10].level | 1 |
| concepts[10].score | 0.4400981664657593 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[10].display_name | Artificial intelligence |
| concepts[11].id | https://openalex.org/C24326235 |
| concepts[11].level | 1 |
| concepts[11].score | 0.38512125611305237 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q126095 |
| concepts[11].display_name | Electronic engineering |
| concepts[12].id | https://openalex.org/C182019814 |
| concepts[12].level | 3 |
| concepts[12].score | 0.3279675841331482 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q1143830 |
| concepts[12].display_name | Resistive random-access memory |
| concepts[13].id | https://openalex.org/C165801399 |
| concepts[13].level | 2 |
| concepts[13].score | 0.2840005159378052 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q25428 |
| concepts[13].display_name | Voltage |
| concepts[14].id | https://openalex.org/C119599485 |
| concepts[14].level | 1 |
| concepts[14].score | 0.24503013491630554 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q43035 |
| concepts[14].display_name | Electrical engineering |
| concepts[15].id | https://openalex.org/C147168706 |
| concepts[15].level | 3 |
| concepts[15].score | 0.1793932318687439 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q1457734 |
| concepts[15].display_name | Recurrent neural network |
| concepts[16].id | https://openalex.org/C177973122 |
| concepts[16].level | 4 |
| concepts[16].score | 0.12582245469093323 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q7860946 |
| concepts[16].display_name | Types of artificial neural networks |
| concepts[17].id | https://openalex.org/C127413603 |
| concepts[17].level | 0 |
| concepts[17].score | 0.12564617395401 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[17].display_name | Engineering |
| concepts[18].id | https://openalex.org/C76155785 |
| concepts[18].level | 1 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q418 |
| concepts[18].display_name | Telecommunications |
| concepts[19].id | https://openalex.org/C168110828 |
| concepts[19].level | 2 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q1331626 |
| concepts[19].display_name | Spectral density |
| keywords[0].id | https://openalex.org/keywords/memristor |
| keywords[0].score | 0.903207540512085 |
| keywords[0].display_name | Memristor |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.7212654948234558 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[2].score | 0.5994633436203003 |
| keywords[2].display_name | Artificial neural network |
| keywords[3].id | https://openalex.org/keywords/transistor |
| keywords[3].score | 0.5762388110160828 |
| keywords[3].display_name | Transistor |
| keywords[4].id | https://openalex.org/keywords/memistor |
| keywords[4].score | 0.5496557354927063 |
| keywords[4].display_name | Memistor |
| keywords[5].id | https://openalex.org/keywords/content-addressable-memory |
| keywords[5].score | 0.5484529137611389 |
| keywords[5].display_name | Content-addressable memory |
| keywords[6].id | https://openalex.org/keywords/physical-neural-network |
| keywords[6].score | 0.5283836722373962 |
| keywords[6].display_name | Physical neural network |
| keywords[7].id | https://openalex.org/keywords/spiking-neural-network |
| keywords[7].score | 0.5226592421531677 |
| keywords[7].display_name | Spiking neural network |
| keywords[8].id | https://openalex.org/keywords/window-function |
| keywords[8].score | 0.4712142050266266 |
| keywords[8].display_name | Window function |
| keywords[9].id | https://openalex.org/keywords/electronic-circuit |
| keywords[9].score | 0.44875770807266235 |
| keywords[9].display_name | Electronic circuit |
| keywords[10].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[10].score | 0.4400981664657593 |
| keywords[10].display_name | Artificial intelligence |
| keywords[11].id | https://openalex.org/keywords/electronic-engineering |
| keywords[11].score | 0.38512125611305237 |
| keywords[11].display_name | Electronic engineering |
| keywords[12].id | https://openalex.org/keywords/resistive-random-access-memory |
| keywords[12].score | 0.3279675841331482 |
| keywords[12].display_name | Resistive random-access memory |
| keywords[13].id | https://openalex.org/keywords/voltage |
| keywords[13].score | 0.2840005159378052 |
| keywords[13].display_name | Voltage |
| keywords[14].id | https://openalex.org/keywords/electrical-engineering |
| keywords[14].score | 0.24503013491630554 |
| keywords[14].display_name | Electrical engineering |
| keywords[15].id | https://openalex.org/keywords/recurrent-neural-network |
| keywords[15].score | 0.1793932318687439 |
| keywords[15].display_name | Recurrent neural network |
| keywords[16].id | https://openalex.org/keywords/types-of-artificial-neural-networks |
| keywords[16].score | 0.12582245469093323 |
| keywords[16].display_name | Types of artificial neural networks |
| keywords[17].id | https://openalex.org/keywords/engineering |
| keywords[17].score | 0.12564617395401 |
| keywords[17].display_name | Engineering |
| language | en |
| locations[0].id | doi:10.1007/s10825-019-01437-w |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S39312595 |
| locations[0].source.issn | 1569-8025, 1572-8137 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 1569-8025 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Journal of Computational Electronics |
| locations[0].source.host_organization | https://openalex.org/P4310319900 |
| locations[0].source.host_organization_name | Springer Science+Business Media |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319900, https://openalex.org/P4310319965 |
| locations[0].source.host_organization_lineage_names | Springer Science+Business Media, Springer Nature |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://link.springer.com/content/pdf/10.1007/s10825-019-01437-w.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Journal of Computational Electronics |
| locations[0].landing_page_url | https://doi.org/10.1007/s10825-019-01437-w |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5064151319 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-3594-8072 |
| authorships[0].author.display_name | Keliu Long |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I4510145 |
| authorships[0].affiliations[0].raw_affiliation_string | School of Information Engineering, Jiangxi University of Science and Technology, Ganzhou, China |
| authorships[0].affiliations[1].institution_ids | https://openalex.org/I20942203 |
| authorships[0].affiliations[1].raw_affiliation_string | State Key Laboratory of Marine Resource Utilization in South China Sea, School of Information and Communication Engineering, Hainan University, Haikou, China |
| authorships[0].institutions[0].id | https://openalex.org/I20942203 |
| authorships[0].institutions[0].ror | https://ror.org/03q648j11 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I20942203 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Hainan University |
| authorships[0].institutions[1].id | https://openalex.org/I4510145 |
| authorships[0].institutions[1].ror | https://ror.org/03q0t9252 |
| authorships[0].institutions[1].type | education |
| authorships[0].institutions[1].lineage | https://openalex.org/I4510145 |
| authorships[0].institutions[1].country_code | CN |
| authorships[0].institutions[1].display_name | Jiangxi University of Science and Technology |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Keliu Long |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | School of Information Engineering, Jiangxi University of Science and Technology, Ganzhou, China, State Key Laboratory of Marine Resource Utilization in South China Sea, School of Information and Communication Engineering, Hainan University, Haikou, China |
| authorships[1].author.id | https://openalex.org/A5100330122 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-2481-2663 |
| authorships[1].author.display_name | Xiaohong Zhang |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I4510145 |
| authorships[1].affiliations[0].raw_affiliation_string | School of Information Engineering, Jiangxi University of Science and Technology, Ganzhou, China |
| authorships[1].institutions[0].id | https://openalex.org/I4510145 |
| authorships[1].institutions[0].ror | https://ror.org/03q0t9252 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I4510145 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Jiangxi University of Science and Technology |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | Xiaohong Zhang |
| authorships[1].is_corresponding | True |
| authorships[1].raw_affiliation_strings | School of Information Engineering, Jiangxi University of Science and Technology, Ganzhou, China |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://link.springer.com/content/pdf/10.1007/s10825-019-01437-w.pdf |
| open_access.oa_status | hybrid |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Memristive-synapse spiking neural networks based on single-electron transistors |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10502 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 1.0 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2208 |
| primary_topic.subfield.display_name | Electrical and Electronic Engineering |
| primary_topic.display_name | Advanced Memory and Neural Computing |
| related_works | https://openalex.org/W1499649160, https://openalex.org/W3049246456, https://openalex.org/W4242780158, https://openalex.org/W4241208885, https://openalex.org/W1990887049, https://openalex.org/W2796301380, https://openalex.org/W1503438809, https://openalex.org/W4385965729, https://openalex.org/W4253845620, https://openalex.org/W2985603549 |
| cited_by_count | 9 |
| counts_by_year[0].year | 2023 |
| counts_by_year[0].cited_by_count | 3 |
| counts_by_year[1].year | 2022 |
| counts_by_year[1].cited_by_count | 1 |
| counts_by_year[2].year | 2021 |
| counts_by_year[2].cited_by_count | 3 |
| counts_by_year[3].year | 2020 |
| counts_by_year[3].cited_by_count | 2 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1007/s10825-019-01437-w |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S39312595 |
| best_oa_location.source.issn | 1569-8025, 1572-8137 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 1569-8025 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Journal of Computational Electronics |
| best_oa_location.source.host_organization | https://openalex.org/P4310319900 |
| best_oa_location.source.host_organization_name | Springer Science+Business Media |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310319900, https://openalex.org/P4310319965 |
| best_oa_location.source.host_organization_lineage_names | Springer Science+Business Media, Springer Nature |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://link.springer.com/content/pdf/10.1007/s10825-019-01437-w.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Journal of Computational Electronics |
| best_oa_location.landing_page_url | https://doi.org/10.1007/s10825-019-01437-w |
| primary_location.id | doi:10.1007/s10825-019-01437-w |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S39312595 |
| primary_location.source.issn | 1569-8025, 1572-8137 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 1569-8025 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Journal of Computational Electronics |
| primary_location.source.host_organization | https://openalex.org/P4310319900 |
| primary_location.source.host_organization_name | Springer Science+Business Media |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319900, https://openalex.org/P4310319965 |
| primary_location.source.host_organization_lineage_names | Springer Science+Business Media, Springer Nature |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://link.springer.com/content/pdf/10.1007/s10825-019-01437-w.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Journal of Computational Electronics |
| primary_location.landing_page_url | https://doi.org/10.1007/s10825-019-01437-w |
| publication_date | 2019-12-26 |
| publication_year | 2019 |
| referenced_works | https://openalex.org/W2042422091, https://openalex.org/W2547354477, https://openalex.org/W2057241502, https://openalex.org/W2044029912, https://openalex.org/W2316218352, https://openalex.org/W2114665523, https://openalex.org/W2006370340, https://openalex.org/W2016121451, https://openalex.org/W2038786761, https://openalex.org/W849015686, https://openalex.org/W2981328134, https://openalex.org/W2164653071, https://openalex.org/W2402501689, https://openalex.org/W2104073505, https://openalex.org/W2317523878, https://openalex.org/W2252337431, https://openalex.org/W2883302337, https://openalex.org/W2040334602, https://openalex.org/W2092359409, https://openalex.org/W2099539066, https://openalex.org/W2312363703, https://openalex.org/W2027885110, https://openalex.org/W2065303046, https://openalex.org/W1843134122, https://openalex.org/W2162651880, https://openalex.org/W2112181056, https://openalex.org/W2068459887, https://openalex.org/W1975003303, https://openalex.org/W2580069392, https://openalex.org/W2016922062, https://openalex.org/W1970974872, https://openalex.org/W2026788380, https://openalex.org/W2144304096, https://openalex.org/W2008123768, https://openalex.org/W2071006350, https://openalex.org/W2594388004, https://openalex.org/W2114863659, https://openalex.org/W2073254954, https://openalex.org/W2149380925, https://openalex.org/W2094325813, https://openalex.org/W2334577204, https://openalex.org/W2153690880, https://openalex.org/W2110697514, https://openalex.org/W2547070467, https://openalex.org/W2005887522, https://openalex.org/W2603064927, https://openalex.org/W1985940938, https://openalex.org/W101771737, https://openalex.org/W2767314024, https://openalex.org/W3106114372, https://openalex.org/W1900200813 |
| referenced_works_count | 51 |
| abstract_inverted_index.A | 81 |
| abstract_inverted_index.a | 101 |
| abstract_inverted_index.In | 1, 61, 126 |
| abstract_inverted_index.an | 149 |
| abstract_inverted_index.by | 21, 97 |
| abstract_inverted_index.in | 37, 107, 163 |
| abstract_inverted_index.is | 78, 86, 105, 161 |
| abstract_inverted_index.of | 8, 28, 47, 66, 84, 115 |
| abstract_inverted_index.on | 70 |
| abstract_inverted_index.to | 41, 93, 111, 133, 139 |
| abstract_inverted_index.we | 128 |
| abstract_inverted_index.Due | 40 |
| abstract_inverted_index.SNN | 48, 142 |
| abstract_inverted_index.SSN | 67 |
| abstract_inverted_index.and | 12, 58, 74, 118, 122, 146, 159 |
| abstract_inverted_index.has | 25, 90 |
| abstract_inverted_index.its | 42 |
| abstract_inverted_index.one | 27 |
| abstract_inverted_index.the | 5, 15, 29, 45, 64, 94, 108, 113, 116, 120, 130, 141, 164, 167 |
| abstract_inverted_index.use | 65 |
| abstract_inverted_index.SETs | 85, 145 |
| abstract_inverted_index.lock | 124 |
| abstract_inverted_index.most | 30 |
| abstract_inverted_index.test | 140 |
| abstract_inverted_index.this | 62 |
| abstract_inverted_index.used | 106 |
| abstract_inverted_index.with | 4, 54, 144 |
| abstract_inverted_index.Here, | 100 |
| abstract_inverted_index.along | 53 |
| abstract_inverted_index.based | 69 |
| abstract_inverted_index.loss, | 157 |
| abstract_inverted_index.model | 110 |
| abstract_inverted_index.novel | 102 |
| abstract_inverted_index.power | 56 |
| abstract_inverted_index.rapid | 6 |
| abstract_inverted_index.solve | 119 |
| abstract_inverted_index.space | 59 |
| abstract_inverted_index.their | 55 |
| abstract_inverted_index.using | 166 |
| abstract_inverted_index.which | 89 |
| abstract_inverted_index.(SETs) | 73 |
| abstract_inverted_index.(SNN), | 19 |
| abstract_inverted_index.PSPICE | 168 |
| abstract_inverted_index.become | 26 |
| abstract_inverted_index.better | 135 |
| abstract_inverted_index.bionic | 13 |
| abstract_inverted_index.memory | 151, 155 |
| abstract_inverted_index.modify | 129 |
| abstract_inverted_index.neural | 17, 23 |
| abstract_inverted_index.pulses | 95 |
| abstract_inverted_index.recent | 2 |
| abstract_inverted_index.weight | 136 |
| abstract_inverted_index.window | 103 |
| abstract_inverted_index.Coulomb | 87 |
| abstract_inverted_index.achieve | 134 |
| abstract_inverted_index.change, | 160 |
| abstract_inverted_index.circuit | 165 |
| abstract_inverted_index.complex | 43 |
| abstract_inverted_index.feature | 83 |
| abstract_inverted_index.fields. | 39 |
| abstract_inverted_index.herein. | 80 |
| abstract_inverted_index.improve | 112 |
| abstract_inverted_index.network | 18 |
| abstract_inverted_index.regard, | 63 |
| abstract_inverted_index.serious | 51 |
| abstract_inverted_index.similar | 92 |
| abstract_inverted_index.spiking | 16, 98 |
| abstract_inverted_index.synapse | 132 |
| abstract_inverted_index.topics, | 33 |
| abstract_inverted_index.various | 38 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.Finally, | 138 |
| abstract_inverted_index.boundary | 121 |
| abstract_inverted_index.circuits | 49, 68 |
| abstract_inverted_index.control. | 137 |
| abstract_inverted_index.decades, | 3 |
| abstract_inverted_index.enjoying | 34 |
| abstract_inverted_index.function | 104 |
| abstract_inverted_index.inspired | 20 |
| abstract_inverted_index.learning | 152 |
| abstract_inverted_index.modified | 75 |
| abstract_inverted_index.neurons. | 99 |
| abstract_inverted_index.numerous | 35 |
| abstract_inverted_index.process, | 153 |
| abstract_inverted_index.produced | 96 |
| abstract_inverted_index.proposed | 79 |
| abstract_inverted_index.requires | 50 |
| abstract_inverted_index.research | 32 |
| abstract_inverted_index.synapses | 77 |
| abstract_inverted_index.systems, | 24 |
| abstract_inverted_index.terminal | 123 |
| abstract_inverted_index.addition, | 127 |
| abstract_inverted_index.including | 154 |
| abstract_inverted_index.linearity | 114 |
| abstract_inverted_index.memristor | 76, 109, 117, 131, 147 |
| abstract_inverted_index.problems. | 125 |
| abstract_inverted_index.prominent | 82 |
| abstract_inverted_index.promising | 31 |
| abstract_inverted_index.synapses, | 148 |
| abstract_inverted_index.artificial | 9 |
| abstract_inverted_index.biological | 22 |
| abstract_inverted_index.simulator. | 169 |
| abstract_inverted_index.structure, | 44 |
| abstract_inverted_index.associative | 150 |
| abstract_inverted_index.constructed | 143 |
| abstract_inverted_index.consumption | 57 |
| abstract_inverted_index.development | 7 |
| abstract_inverted_index.implemented | 162 |
| abstract_inverted_index.occupation. | 60 |
| abstract_inverted_index.transistors | 72 |
| abstract_inverted_index.applications | 36 |
| abstract_inverted_index.engineering, | 14 |
| abstract_inverted_index.intelligence | 10 |
| abstract_inverted_index.oscillation, | 88 |
| abstract_inverted_index.technologies | 11 |
| abstract_inverted_index.construction, | 156 |
| abstract_inverted_index.consideration, | 52 |
| abstract_inverted_index.simplification | 46 |
| abstract_inverted_index.characteristics | 91 |
| abstract_inverted_index.reconstruction, | 158 |
| abstract_inverted_index.single-electron | 71 |
| cited_by_percentile_year.max | 97 |
| cited_by_percentile_year.min | 89 |
| corresponding_author_ids | https://openalex.org/A5100330122 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 2 |
| corresponding_institution_ids | https://openalex.org/I4510145 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/7 |
| sustainable_development_goals[0].score | 0.6700000166893005 |
| sustainable_development_goals[0].display_name | Affordable and clean energy |
| citation_normalized_percentile.value | 0.7302638 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |