Meta-learning of Sequential Strategies Article Swipe
YOU?
·
· 2019
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.1905.03030
In this report we review memory-based meta-learning as a tool for building sample-efficient strategies that learn from past experience to adapt to any task within a target class. Our goal is to equip the reader with the conceptual foundations of this tool for building new, scalable agents that operate on broad domains. To do so, we present basic algorithmic templates for building near-optimal predictors and reinforcement learners which behave as if they had a probabilistic model that allowed them to efficiently exploit task structure. Furthermore, we recast memory-based meta-learning within a Bayesian framework, showing that the meta-learned strategies are near-optimal because they amortize Bayes-filtered data, where the adaptation is implemented in the memory dynamics as a state-machine of sufficient statistics. Essentially, memory-based meta-learning translates the hard problem of probabilistic sequential inference into a regression problem.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/1905.03030
- https://arxiv.org/pdf/1905.03030
- OA Status
- green
- Cited By
- 34
- References
- 78
- Related Works
- 20
- OpenAlex ID
- https://openalex.org/W2944299231
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W2944299231Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.1905.03030Digital Object Identifier
- Title
-
Meta-learning of Sequential StrategiesWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2019Year of publication
- Publication date
-
2019-05-08Full publication date if available
- Authors
-
Pedro A. Ortega, Jane X. Wang, Mark Rowland, Tim Genewein, Zeb Kurth‐Nelson, Razvan Pascanu, Nicolas Heess, Joel Veness, Alexander Pritzel, Pablo Sprechmann, Siddhant M. Jayakumar, Tom McGrath, Kevin J. Miller, Mohammad Gheshlaghi Azar, Ian Osband, Neil C. Rabinowitz, András György, Silvia Chiappa, Simon Osindero, Yee Whye Teh, Hado van Hasselt, Nando de Freitas, Matthew Botvinick, Shane LeggList of authors in order
- Landing page
-
https://arxiv.org/abs/1905.03030Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/1905.03030Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/1905.03030Direct OA link when available
- Concepts
-
Computer science, Meta learning (computer science), Reinforcement learning, Probabilistic logic, Artificial intelligence, Machine learning, Task (project management), Exploit, Inference, Bayesian inference, Class (philosophy), Bayesian probability, Management, Computer security, EconomicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
34Total citation count in OpenAlex
- Citations by year (recent)
-
2023: 1, 2022: 3, 2021: 15, 2020: 10, 2019: 5Per-year citation counts (last 5 years)
- References (count)
-
78Number of works referenced by this work
- Related works (count)
-
20Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W2944299231 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.1905.03030 |
| ids.doi | https://doi.org/10.48550/arxiv.1905.03030 |
| ids.mag | 2944299231 |
| ids.openalex | https://openalex.org/W2944299231 |
| fwci | |
| type | preprint |
| title | Meta-learning of Sequential Strategies |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T12535 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9973999857902527 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Machine Learning and Data Classification |
| topics[1].id | https://openalex.org/T12814 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9970999956130981 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Gaussian Processes and Bayesian Inference |
| topics[2].id | https://openalex.org/T12761 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9958000183105469 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Data Stream Mining Techniques |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.7886965274810791 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C2781002164 |
| concepts[1].level | 3 |
| concepts[1].score | 0.7057467699050903 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q6822311 |
| concepts[1].display_name | Meta learning (computer science) |
| concepts[2].id | https://openalex.org/C97541855 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6833515763282776 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q830687 |
| concepts[2].display_name | Reinforcement learning |
| concepts[3].id | https://openalex.org/C49937458 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6238852143287659 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q2599292 |
| concepts[3].display_name | Probabilistic logic |
| concepts[4].id | https://openalex.org/C154945302 |
| concepts[4].level | 1 |
| concepts[4].score | 0.6117127537727356 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[4].display_name | Artificial intelligence |
| concepts[5].id | https://openalex.org/C119857082 |
| concepts[5].level | 1 |
| concepts[5].score | 0.5883113145828247 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[5].display_name | Machine learning |
| concepts[6].id | https://openalex.org/C2780451532 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5792441964149475 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q759676 |
| concepts[6].display_name | Task (project management) |
| concepts[7].id | https://openalex.org/C165696696 |
| concepts[7].level | 2 |
| concepts[7].score | 0.5403530597686768 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q11287 |
| concepts[7].display_name | Exploit |
| concepts[8].id | https://openalex.org/C2776214188 |
| concepts[8].level | 2 |
| concepts[8].score | 0.511457085609436 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q408386 |
| concepts[8].display_name | Inference |
| concepts[9].id | https://openalex.org/C160234255 |
| concepts[9].level | 3 |
| concepts[9].score | 0.4733462631702423 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q812535 |
| concepts[9].display_name | Bayesian inference |
| concepts[10].id | https://openalex.org/C2777212361 |
| concepts[10].level | 2 |
| concepts[10].score | 0.46667373180389404 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q5127848 |
| concepts[10].display_name | Class (philosophy) |
| concepts[11].id | https://openalex.org/C107673813 |
| concepts[11].level | 2 |
| concepts[11].score | 0.38572078943252563 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q812534 |
| concepts[11].display_name | Bayesian probability |
| concepts[12].id | https://openalex.org/C187736073 |
| concepts[12].level | 1 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q2920921 |
| concepts[12].display_name | Management |
| concepts[13].id | https://openalex.org/C38652104 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q3510521 |
| concepts[13].display_name | Computer security |
| concepts[14].id | https://openalex.org/C162324750 |
| concepts[14].level | 0 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q8134 |
| concepts[14].display_name | Economics |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.7886965274810791 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/meta-learning |
| keywords[1].score | 0.7057467699050903 |
| keywords[1].display_name | Meta learning (computer science) |
| keywords[2].id | https://openalex.org/keywords/reinforcement-learning |
| keywords[2].score | 0.6833515763282776 |
| keywords[2].display_name | Reinforcement learning |
| keywords[3].id | https://openalex.org/keywords/probabilistic-logic |
| keywords[3].score | 0.6238852143287659 |
| keywords[3].display_name | Probabilistic logic |
| keywords[4].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[4].score | 0.6117127537727356 |
| keywords[4].display_name | Artificial intelligence |
| keywords[5].id | https://openalex.org/keywords/machine-learning |
| keywords[5].score | 0.5883113145828247 |
| keywords[5].display_name | Machine learning |
| keywords[6].id | https://openalex.org/keywords/task |
| keywords[6].score | 0.5792441964149475 |
| keywords[6].display_name | Task (project management) |
| keywords[7].id | https://openalex.org/keywords/exploit |
| keywords[7].score | 0.5403530597686768 |
| keywords[7].display_name | Exploit |
| keywords[8].id | https://openalex.org/keywords/inference |
| keywords[8].score | 0.511457085609436 |
| keywords[8].display_name | Inference |
| keywords[9].id | https://openalex.org/keywords/bayesian-inference |
| keywords[9].score | 0.4733462631702423 |
| keywords[9].display_name | Bayesian inference |
| keywords[10].id | https://openalex.org/keywords/class |
| keywords[10].score | 0.46667373180389404 |
| keywords[10].display_name | Class (philosophy) |
| keywords[11].id | https://openalex.org/keywords/bayesian-probability |
| keywords[11].score | 0.38572078943252563 |
| keywords[11].display_name | Bayesian probability |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:1905.03030 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/1905.03030 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/1905.03030 |
| locations[1].id | mag:2944299231 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | arXiv (Cornell University) |
| locations[1].landing_page_url | https://arxiv.org/pdf/1905.03030.pdf |
| locations[2].id | doi:10.48550/arxiv.1905.03030 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S4306400194 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | True |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | arXiv (Cornell University) |
| locations[2].source.host_organization | https://openalex.org/I205783295 |
| locations[2].source.host_organization_name | Cornell University |
| locations[2].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | |
| locations[2].raw_type | article |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | |
| locations[2].raw_source_name | |
| locations[2].landing_page_url | https://doi.org/10.48550/arxiv.1905.03030 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5035060247 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-2261-8453 |
| authorships[0].author.display_name | Pedro A. Ortega |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Pedro A. Ortega |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5054833182 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-1339-5040 |
| authorships[1].author.display_name | Jane X. Wang |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Jane X. Wang |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5108379405 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Mark Rowland |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Mark Rowland |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5013602545 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-8039-4027 |
| authorships[3].author.display_name | Tim Genewein |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Tim Genewein |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5034618143 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-0119-1289 |
| authorships[4].author.display_name | Zeb Kurth‐Nelson |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Zeb Kurth-Nelson |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5043910056 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-5470-1238 |
| authorships[5].author.display_name | Razvan Pascanu |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Razvan Pascanu |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5062951341 |
| authorships[6].author.orcid | https://orcid.org/0000-0001-7876-9256 |
| authorships[6].author.display_name | Nicolas Heess |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Nicolas Heess |
| authorships[6].is_corresponding | False |
| authorships[7].author.id | https://openalex.org/A5060709021 |
| authorships[7].author.orcid | |
| authorships[7].author.display_name | Joel Veness |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | Joel Veness |
| authorships[7].is_corresponding | False |
| authorships[8].author.id | https://openalex.org/A5062883663 |
| authorships[8].author.orcid | https://orcid.org/0000-0002-4233-9040 |
| authorships[8].author.display_name | Alexander Pritzel |
| authorships[8].author_position | middle |
| authorships[8].raw_author_name | Alexander Pritzel |
| authorships[8].is_corresponding | False |
| authorships[9].author.id | https://openalex.org/A5088180679 |
| authorships[9].author.orcid | |
| authorships[9].author.display_name | Pablo Sprechmann |
| authorships[9].author_position | middle |
| authorships[9].raw_author_name | Pablo Sprechmann |
| authorships[9].is_corresponding | False |
| authorships[10].author.id | https://openalex.org/A5053701393 |
| authorships[10].author.orcid | |
| authorships[10].author.display_name | Siddhant M. Jayakumar |
| authorships[10].author_position | middle |
| authorships[10].raw_author_name | Siddhant M. Jayakumar |
| authorships[10].is_corresponding | False |
| authorships[11].author.id | https://openalex.org/A5035693801 |
| authorships[11].author.orcid | |
| authorships[11].author.display_name | Tom McGrath |
| authorships[11].author_position | middle |
| authorships[11].raw_author_name | Tom McGrath |
| authorships[11].is_corresponding | False |
| authorships[12].author.id | https://openalex.org/A5065046630 |
| authorships[12].author.orcid | https://orcid.org/0000-0003-0511-5424 |
| authorships[12].author.display_name | Kevin J. Miller |
| authorships[12].author_position | middle |
| authorships[12].raw_author_name | Kevin J. Miller |
| authorships[12].is_corresponding | False |
| authorships[13].author.id | https://openalex.org/A5043355670 |
| authorships[13].author.orcid | |
| authorships[13].author.display_name | Mohammad Gheshlaghi Azar |
| authorships[13].author_position | middle |
| authorships[13].raw_author_name | Mohammad Gheshlaghi Azar |
| authorships[13].is_corresponding | False |
| authorships[14].author.id | https://openalex.org/A5015899120 |
| authorships[14].author.orcid | |
| authorships[14].author.display_name | Ian Osband |
| authorships[14].author_position | middle |
| authorships[14].raw_author_name | Ian Osband |
| authorships[14].is_corresponding | False |
| authorships[15].author.id | https://openalex.org/A5010900024 |
| authorships[15].author.orcid | https://orcid.org/0000-0002-4030-1567 |
| authorships[15].author.display_name | Neil C. Rabinowitz |
| authorships[15].author_position | middle |
| authorships[15].raw_author_name | Neil C. Rabinowitz |
| authorships[15].is_corresponding | False |
| authorships[16].author.id | https://openalex.org/A5041609088 |
| authorships[16].author.orcid | https://orcid.org/0000-0003-0586-4337 |
| authorships[16].author.display_name | András György |
| authorships[16].author_position | middle |
| authorships[16].raw_author_name | András György |
| authorships[16].is_corresponding | False |
| authorships[17].author.id | https://openalex.org/A5087675089 |
| authorships[17].author.orcid | https://orcid.org/0000-0002-1882-6842 |
| authorships[17].author.display_name | Silvia Chiappa |
| authorships[17].author_position | middle |
| authorships[17].raw_author_name | Silvia Chiappa |
| authorships[17].is_corresponding | False |
| authorships[18].author.id | https://openalex.org/A5052435039 |
| authorships[18].author.orcid | |
| authorships[18].author.display_name | Simon Osindero |
| authorships[18].author_position | middle |
| authorships[18].raw_author_name | Simon Osindero |
| authorships[18].is_corresponding | False |
| authorships[19].author.id | https://openalex.org/A5064373793 |
| authorships[19].author.orcid | https://orcid.org/0000-0001-5365-6933 |
| authorships[19].author.display_name | Yee Whye Teh |
| authorships[19].author_position | middle |
| authorships[19].raw_author_name | Yee Whye Teh |
| authorships[19].is_corresponding | False |
| authorships[20].author.id | https://openalex.org/A5033135596 |
| authorships[20].author.orcid | |
| authorships[20].author.display_name | Hado van Hasselt |
| authorships[20].author_position | middle |
| authorships[20].raw_author_name | Hado van Hasselt |
| authorships[20].is_corresponding | False |
| authorships[21].author.id | https://openalex.org/A5082304130 |
| authorships[21].author.orcid | https://orcid.org/0000-0003-4770-7217 |
| authorships[21].author.display_name | Nando de Freitas |
| authorships[21].author_position | middle |
| authorships[21].raw_author_name | Nando de Freitas |
| authorships[21].is_corresponding | False |
| authorships[22].author.id | https://openalex.org/A5083771180 |
| authorships[22].author.orcid | https://orcid.org/0000-0001-7758-6896 |
| authorships[22].author.display_name | Matthew Botvinick |
| authorships[22].author_position | middle |
| authorships[22].raw_author_name | Matthew Botvinick |
| authorships[22].is_corresponding | False |
| authorships[23].author.id | https://openalex.org/A5008987732 |
| authorships[23].author.orcid | |
| authorships[23].author.display_name | Shane Legg |
| authorships[23].author_position | last |
| authorships[23].raw_author_name | Shane Legg |
| authorships[23].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/1905.03030 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Meta-learning of Sequential Strategies |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T12535 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9973999857902527 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Machine Learning and Data Classification |
| related_works | https://openalex.org/W2604763608, https://openalex.org/W2945020056, https://openalex.org/W2923504512, https://openalex.org/W2550182557, https://openalex.org/W2963581679, https://openalex.org/W2787501667, https://openalex.org/W2064675550, https://openalex.org/W2785397462, https://openalex.org/W2578206533, https://openalex.org/W1621791442, https://openalex.org/W3104240813, https://openalex.org/W2913340405, https://openalex.org/W2158782408, https://openalex.org/W2121863487, https://openalex.org/W2039522160, https://openalex.org/W1497039698, https://openalex.org/W2166253248, https://openalex.org/W2149721706, https://openalex.org/W2137825550, https://openalex.org/W1542791059 |
| cited_by_count | 34 |
| counts_by_year[0].year | 2023 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2022 |
| counts_by_year[1].cited_by_count | 3 |
| counts_by_year[2].year | 2021 |
| counts_by_year[2].cited_by_count | 15 |
| counts_by_year[3].year | 2020 |
| counts_by_year[3].cited_by_count | 10 |
| counts_by_year[4].year | 2019 |
| counts_by_year[4].cited_by_count | 5 |
| locations_count | 3 |
| best_oa_location.id | pmh:oai:arXiv.org:1905.03030 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/1905.03030 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/1905.03030 |
| primary_location.id | pmh:oai:arXiv.org:1905.03030 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/1905.03030 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/1905.03030 |
| publication_date | 2019-05-08 |
| publication_year | 2019 |
| referenced_works | https://openalex.org/W2962908092, https://openalex.org/W2567374473, https://openalex.org/W2951775809, https://openalex.org/W2036018689, https://openalex.org/W1965761421, https://openalex.org/W995630646, https://openalex.org/W2119135250, https://openalex.org/W2133487567, https://openalex.org/W597147179, https://openalex.org/W2950517718, https://openalex.org/W2952003143, https://openalex.org/W2013391942, https://openalex.org/W2787501667, https://openalex.org/W2513739600, https://openalex.org/W2949517868, https://openalex.org/W2264897026, https://openalex.org/W2784596339, https://openalex.org/W2951634833, https://openalex.org/W1522301498, https://openalex.org/W2963026770, https://openalex.org/W2135625884, https://openalex.org/W2601450892, https://openalex.org/W2024060531, https://openalex.org/W2137825550, https://openalex.org/W2811172445, https://openalex.org/W2895794056, https://openalex.org/W2963054961, https://openalex.org/W2550182557, https://openalex.org/W2537265010, https://openalex.org/W2964043796, https://openalex.org/W2194690080, https://openalex.org/W2963373084, https://openalex.org/W2151710526, https://openalex.org/W2409744450, https://openalex.org/W2892620417, https://openalex.org/W2142176084, https://openalex.org/W1506806321, https://openalex.org/W2963430173, https://openalex.org/W3104240813, https://openalex.org/W2167378781, https://openalex.org/W2114485587, https://openalex.org/W1581242383, https://openalex.org/W1757796397, https://openalex.org/W2247611772, https://openalex.org/W1542941925, https://openalex.org/W1513611548, https://openalex.org/W1980516134, https://openalex.org/W950853366, https://openalex.org/W2553347458, https://openalex.org/W2753160622, https://openalex.org/W2964000194, https://openalex.org/W2964067969, https://openalex.org/W1986342384, https://openalex.org/W2123399796, https://openalex.org/W2039522160, https://openalex.org/W2094853078, https://openalex.org/W1485981043, https://openalex.org/W2788388592, https://openalex.org/W2962779270, https://openalex.org/W1991626742, https://openalex.org/W2578206533, https://openalex.org/W1994584977, https://openalex.org/W2472819217, https://openalex.org/W2794363191, https://openalex.org/W2101493843, https://openalex.org/W2110485445, https://openalex.org/W2561226782, https://openalex.org/W1974964983, https://openalex.org/W2326740504, https://openalex.org/W1638203394, https://openalex.org/W1570963478, https://openalex.org/W2171084228, https://openalex.org/W2964093801, https://openalex.org/W2312609093, https://openalex.org/W1621791442, https://openalex.org/W2963341924, https://openalex.org/W1509562192, https://openalex.org/W2909534157 |
| referenced_works_count | 78 |
| abstract_inverted_index.a | 8, 25, 73, 90, 115, 132 |
| abstract_inverted_index.In | 0 |
| abstract_inverted_index.To | 52 |
| abstract_inverted_index.as | 7, 69, 114 |
| abstract_inverted_index.do | 53 |
| abstract_inverted_index.if | 70 |
| abstract_inverted_index.in | 110 |
| abstract_inverted_index.is | 30, 108 |
| abstract_inverted_index.of | 39, 117, 127 |
| abstract_inverted_index.on | 49 |
| abstract_inverted_index.to | 19, 21, 31, 79 |
| abstract_inverted_index.we | 3, 55, 85 |
| abstract_inverted_index.Our | 28 |
| abstract_inverted_index.and | 64 |
| abstract_inverted_index.any | 22 |
| abstract_inverted_index.are | 98 |
| abstract_inverted_index.for | 10, 42, 60 |
| abstract_inverted_index.had | 72 |
| abstract_inverted_index.so, | 54 |
| abstract_inverted_index.the | 33, 36, 95, 106, 111, 124 |
| abstract_inverted_index.from | 16 |
| abstract_inverted_index.goal | 29 |
| abstract_inverted_index.hard | 125 |
| abstract_inverted_index.into | 131 |
| abstract_inverted_index.new, | 44 |
| abstract_inverted_index.past | 17 |
| abstract_inverted_index.task | 23, 82 |
| abstract_inverted_index.that | 14, 47, 76, 94 |
| abstract_inverted_index.them | 78 |
| abstract_inverted_index.they | 71, 101 |
| abstract_inverted_index.this | 1, 40 |
| abstract_inverted_index.tool | 9, 41 |
| abstract_inverted_index.with | 35 |
| abstract_inverted_index.adapt | 20 |
| abstract_inverted_index.basic | 57 |
| abstract_inverted_index.broad | 50 |
| abstract_inverted_index.data, | 104 |
| abstract_inverted_index.equip | 32 |
| abstract_inverted_index.learn | 15 |
| abstract_inverted_index.model | 75 |
| abstract_inverted_index.where | 105 |
| abstract_inverted_index.which | 67 |
| abstract_inverted_index.agents | 46 |
| abstract_inverted_index.behave | 68 |
| abstract_inverted_index.class. | 27 |
| abstract_inverted_index.memory | 112 |
| abstract_inverted_index.reader | 34 |
| abstract_inverted_index.recast | 86 |
| abstract_inverted_index.report | 2 |
| abstract_inverted_index.review | 4 |
| abstract_inverted_index.target | 26 |
| abstract_inverted_index.within | 24, 89 |
| abstract_inverted_index.allowed | 77 |
| abstract_inverted_index.because | 100 |
| abstract_inverted_index.exploit | 81 |
| abstract_inverted_index.operate | 48 |
| abstract_inverted_index.present | 56 |
| abstract_inverted_index.problem | 126 |
| abstract_inverted_index.showing | 93 |
| abstract_inverted_index.Bayesian | 91 |
| abstract_inverted_index.amortize | 102 |
| abstract_inverted_index.building | 11, 43, 61 |
| abstract_inverted_index.domains. | 51 |
| abstract_inverted_index.dynamics | 113 |
| abstract_inverted_index.learners | 66 |
| abstract_inverted_index.problem. | 134 |
| abstract_inverted_index.scalable | 45 |
| abstract_inverted_index.inference | 130 |
| abstract_inverted_index.templates | 59 |
| abstract_inverted_index.adaptation | 107 |
| abstract_inverted_index.conceptual | 37 |
| abstract_inverted_index.experience | 18 |
| abstract_inverted_index.framework, | 92 |
| abstract_inverted_index.predictors | 63 |
| abstract_inverted_index.regression | 133 |
| abstract_inverted_index.sequential | 129 |
| abstract_inverted_index.strategies | 13, 97 |
| abstract_inverted_index.structure. | 83 |
| abstract_inverted_index.sufficient | 118 |
| abstract_inverted_index.translates | 123 |
| abstract_inverted_index.algorithmic | 58 |
| abstract_inverted_index.efficiently | 80 |
| abstract_inverted_index.foundations | 38 |
| abstract_inverted_index.implemented | 109 |
| abstract_inverted_index.statistics. | 119 |
| abstract_inverted_index.Essentially, | 120 |
| abstract_inverted_index.Furthermore, | 84 |
| abstract_inverted_index.memory-based | 5, 87, 121 |
| abstract_inverted_index.meta-learned | 96 |
| abstract_inverted_index.near-optimal | 62, 99 |
| abstract_inverted_index.meta-learning | 6, 88, 122 |
| abstract_inverted_index.probabilistic | 74, 128 |
| abstract_inverted_index.reinforcement | 65 |
| abstract_inverted_index.state-machine | 116 |
| abstract_inverted_index.Bayes-filtered | 103 |
| abstract_inverted_index.sample-efficient | 12 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 24 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/4 |
| sustainable_development_goals[0].score | 0.6499999761581421 |
| sustainable_development_goals[0].display_name | Quality Education |
| citation_normalized_percentile |