Meta-learning optimizes predictions of missing links in real-world networks Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2508.09069
Relational data are ubiquitous in real-world data applications, e.g., in social network analysis or biological modeling, but networks are nearly always incompletely observed. The state-of-the-art for predicting missing links in the hard case of a network without node attributes uses model stacking or neural network techniques. It remains unknown which approach is best, and whether or how the best choice of algorithm depends on the input network's characteristics. We answer these questions systematically using a large, structurally diverse benchmark of 550 real-world networks under two standard accuracy measures (AUC and Top-k), comparing four stacking algorithms with 42 topological link predictors, two of which we introduce here, and two graph neural network algorithms. We show that no algorithm is best across all input networks, all algorithms perform well on most social networks, and few perform well on economic and biological networks. Overall, model stacking with a random forest is both highly scalable and surpasses on AUC or is competitive with graph neural networks on Top-k accuracy. But, algorithm performance depends strongly on network characteristics like the degree distribution, triangle density, and degree assortativity. We introduce a meta-learning algorithm that exploits this variability to optimize link predictions for individual networks by selecting the best algorithm to apply, which we show outperforms all state-of-the-art algorithms and scales to large networks.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2508.09069
- https://arxiv.org/pdf/2508.09069
- OA Status
- green
- OpenAlex ID
- https://openalex.org/W4416244035
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4416244035Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2508.09069Digital Object Identifier
- Title
-
Meta-learning optimizes predictions of missing links in real-world networksWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-08-12Full publication date if available
- Authors
-
Bhim Singh, Lucy B. Van KleunenList of authors in order
- Landing page
-
https://arxiv.org/abs/2508.09069Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2508.09069Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2508.09069Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W4416244035 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2508.09069 |
| ids.doi | https://doi.org/10.48550/arxiv.2508.09069 |
| ids.openalex | https://openalex.org/W4416244035 |
| fwci | |
| type | preprint |
| title | Meta-learning optimizes predictions of missing links in real-world networks |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2508.09069 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2508.09069 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2508.09069 |
| locations[1].id | doi:10.48550/arxiv.2508.09069 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2508.09069 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5067751216 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-4759-7484 |
| authorships[0].author.display_name | Bhim Singh |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Singh, Bisman |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5050808709 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-4422-712X |
| authorships[1].author.display_name | Lucy B. Van Kleunen |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | Van Kleunen, Lucy |
| authorships[1].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2508.09069 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Meta-learning optimizes predictions of missing links in real-world networks |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-28T09:08:43.469098 |
| primary_topic | |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2508.09069 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2508.09069 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2508.09069 |
| primary_location.id | pmh:oai:arXiv.org:2508.09069 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2508.09069 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2508.09069 |
| publication_date | 2025-08-12 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 34, 74, 144, 184 |
| abstract_inverted_index.42 | 96 |
| abstract_inverted_index.It | 46 |
| abstract_inverted_index.We | 68, 112, 182 |
| abstract_inverted_index.by | 198 |
| abstract_inverted_index.in | 4, 9, 29 |
| abstract_inverted_index.is | 51, 117, 147, 156 |
| abstract_inverted_index.no | 115 |
| abstract_inverted_index.of | 33, 60, 79, 101 |
| abstract_inverted_index.on | 63, 127, 135, 153, 162, 170 |
| abstract_inverted_index.or | 13, 42, 55, 155 |
| abstract_inverted_index.to | 191, 203, 214 |
| abstract_inverted_index.we | 103, 206 |
| abstract_inverted_index.550 | 80 |
| abstract_inverted_index.AUC | 154 |
| abstract_inverted_index.The | 23 |
| abstract_inverted_index.all | 120, 123, 209 |
| abstract_inverted_index.and | 53, 89, 106, 131, 137, 151, 179, 212 |
| abstract_inverted_index.are | 2, 18 |
| abstract_inverted_index.but | 16 |
| abstract_inverted_index.few | 132 |
| abstract_inverted_index.for | 25, 195 |
| abstract_inverted_index.how | 56 |
| abstract_inverted_index.the | 30, 57, 64, 174, 200 |
| abstract_inverted_index.two | 84, 100, 107 |
| abstract_inverted_index.(AUC | 88 |
| abstract_inverted_index.But, | 165 |
| abstract_inverted_index.best | 58, 118, 201 |
| abstract_inverted_index.both | 148 |
| abstract_inverted_index.case | 32 |
| abstract_inverted_index.data | 1, 6 |
| abstract_inverted_index.four | 92 |
| abstract_inverted_index.hard | 31 |
| abstract_inverted_index.like | 173 |
| abstract_inverted_index.link | 98, 193 |
| abstract_inverted_index.most | 128 |
| abstract_inverted_index.node | 37 |
| abstract_inverted_index.show | 113, 207 |
| abstract_inverted_index.that | 114, 187 |
| abstract_inverted_index.this | 189 |
| abstract_inverted_index.uses | 39 |
| abstract_inverted_index.well | 126, 134 |
| abstract_inverted_index.with | 95, 143, 158 |
| abstract_inverted_index.Top-k | 163 |
| abstract_inverted_index.best, | 52 |
| abstract_inverted_index.e.g., | 8 |
| abstract_inverted_index.graph | 108, 159 |
| abstract_inverted_index.here, | 105 |
| abstract_inverted_index.input | 65, 121 |
| abstract_inverted_index.large | 215 |
| abstract_inverted_index.links | 28 |
| abstract_inverted_index.model | 40, 141 |
| abstract_inverted_index.these | 70 |
| abstract_inverted_index.under | 83 |
| abstract_inverted_index.using | 73 |
| abstract_inverted_index.which | 49, 102, 205 |
| abstract_inverted_index.across | 119 |
| abstract_inverted_index.always | 20 |
| abstract_inverted_index.answer | 69 |
| abstract_inverted_index.apply, | 204 |
| abstract_inverted_index.choice | 59 |
| abstract_inverted_index.degree | 175, 180 |
| abstract_inverted_index.forest | 146 |
| abstract_inverted_index.highly | 149 |
| abstract_inverted_index.large, | 75 |
| abstract_inverted_index.nearly | 19 |
| abstract_inverted_index.neural | 43, 109, 160 |
| abstract_inverted_index.random | 145 |
| abstract_inverted_index.scales | 213 |
| abstract_inverted_index.social | 10, 129 |
| abstract_inverted_index.Top-k), | 90 |
| abstract_inverted_index.depends | 62, 168 |
| abstract_inverted_index.diverse | 77 |
| abstract_inverted_index.missing | 27 |
| abstract_inverted_index.network | 11, 35, 44, 110, 171 |
| abstract_inverted_index.perform | 125, 133 |
| abstract_inverted_index.remains | 47 |
| abstract_inverted_index.unknown | 48 |
| abstract_inverted_index.whether | 54 |
| abstract_inverted_index.without | 36 |
| abstract_inverted_index.Overall, | 140 |
| abstract_inverted_index.accuracy | 86 |
| abstract_inverted_index.analysis | 12 |
| abstract_inverted_index.approach | 50 |
| abstract_inverted_index.density, | 178 |
| abstract_inverted_index.economic | 136 |
| abstract_inverted_index.exploits | 188 |
| abstract_inverted_index.measures | 87 |
| abstract_inverted_index.networks | 17, 82, 161, 197 |
| abstract_inverted_index.optimize | 192 |
| abstract_inverted_index.scalable | 150 |
| abstract_inverted_index.stacking | 41, 93, 142 |
| abstract_inverted_index.standard | 85 |
| abstract_inverted_index.strongly | 169 |
| abstract_inverted_index.triangle | 177 |
| abstract_inverted_index.accuracy. | 164 |
| abstract_inverted_index.algorithm | 61, 116, 166, 186, 202 |
| abstract_inverted_index.benchmark | 78 |
| abstract_inverted_index.comparing | 91 |
| abstract_inverted_index.introduce | 104, 183 |
| abstract_inverted_index.modeling, | 15 |
| abstract_inverted_index.network's | 66 |
| abstract_inverted_index.networks, | 122, 130 |
| abstract_inverted_index.networks. | 139, 216 |
| abstract_inverted_index.observed. | 22 |
| abstract_inverted_index.questions | 71 |
| abstract_inverted_index.selecting | 199 |
| abstract_inverted_index.surpasses | 152 |
| abstract_inverted_index.Relational | 0 |
| abstract_inverted_index.algorithms | 94, 124, 211 |
| abstract_inverted_index.attributes | 38 |
| abstract_inverted_index.biological | 14, 138 |
| abstract_inverted_index.individual | 196 |
| abstract_inverted_index.predicting | 26 |
| abstract_inverted_index.real-world | 5, 81 |
| abstract_inverted_index.ubiquitous | 3 |
| abstract_inverted_index.algorithms. | 111 |
| abstract_inverted_index.competitive | 157 |
| abstract_inverted_index.outperforms | 208 |
| abstract_inverted_index.performance | 167 |
| abstract_inverted_index.predictions | 194 |
| abstract_inverted_index.predictors, | 99 |
| abstract_inverted_index.techniques. | 45 |
| abstract_inverted_index.topological | 97 |
| abstract_inverted_index.variability | 190 |
| abstract_inverted_index.incompletely | 21 |
| abstract_inverted_index.structurally | 76 |
| abstract_inverted_index.applications, | 7 |
| abstract_inverted_index.distribution, | 176 |
| abstract_inverted_index.meta-learning | 185 |
| abstract_inverted_index.assortativity. | 181 |
| abstract_inverted_index.systematically | 72 |
| abstract_inverted_index.characteristics | 172 |
| abstract_inverted_index.characteristics. | 67 |
| abstract_inverted_index.state-of-the-art | 24, 210 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 2 |
| citation_normalized_percentile |