metaSpectraST: an unsupervised and database-independent analysis workflow for metaproteomic MS/MS data using spectrum clustering Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.21203/rs.3.rs-1695549/v1
Background: The high diversity and complexity of the microbial community make it a formidable challenge to identify and quantify the large number of proteins expressed in the community. Conventional metaproteomics approaches largely rely on accurate identification of the MS/MS spectra to their corresponding short peptides in the digested samples, followed by protein inference and subsequent taxonomic and functional analysis of the detected proteins. These approaches are dependent on the availability of protein sequence databases derived either from metagenomic sequencing of the same sample, or from public repositories. Due to the incompleteness or imperfections of these protein sequence databases, and the preponderance of homologous proteins expressed by different bacterial species in the community, this computational process of peptide identification and protein inference is challenging and error-prone, which hinders the comparison of metaproteomes across multiple samples. Results: We developed metaSpectraST, an unsupervised and database-independent workflow to analyze metaproteomic samples by clustering experimentally observed MS/MS spectra based on their spectral similarity. We applied metaSpectraST to fecal samples collected from littermates of two different mother mice right after weaning. Quantitative proteome profiles of the microbial communities of different mice could be obtained without peptide identification, and used to evaluate the overall similarity between samples and highlight any differentiating markers. Compared to the conventional database-dependent metaproteomics analysis, metaSpectraST is more successful in classifying the samples and detecting the subtle microbiome changes of mouse gut microbiomes post-weaning. metaSpectraST could also be used as a tool for selecting the suitable biological replicates from samples with wide inter-individual variation. Conclusions: metaSpectraST enables rapid profiling of metaproteomic samples without the need for constructing the protein sequence database or identification of the MS/MS spectra. It maximally preserves information contained in the experimental MS/MS spectra by clustering all of them first, and thus is able to better profile the complex microbial communities and highlight their functional changes, as compared with conventional approaches.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- https://doi.org/10.21203/rs.3.rs-1695549/v1
- https://www.researchsquare.com/article/rs-1695549/latest.pdf
- OA Status
- green
- Cited By
- 2
- References
- 62
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4281751814
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4281751814Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.21203/rs.3.rs-1695549/v1Digital Object Identifier
- Title
-
metaSpectraST: an unsupervised and database-independent analysis workflow for metaproteomic MS/MS data using spectrum clusteringWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-05-31Full publication date if available
- Authors
-
Chunlin Hao, Joshua E. Elias, Patrick K. H. Lee, Henry LamList of authors in order
- Landing page
-
https://doi.org/10.21203/rs.3.rs-1695549/v1Publisher landing page
- PDF URL
-
https://www.researchsquare.com/article/rs-1695549/latest.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://www.researchsquare.com/article/rs-1695549/latest.pdfDirect OA link when available
- Concepts
-
Metaproteomics, Proteome, Metagenomics, Cluster analysis, Computational biology, Biology, Protein sequencing, Microbiome, Identification (biology), Inference, Similarity (geometry), Computer science, Bioinformatics, Artificial intelligence, Peptide sequence, Genetics, Image (mathematics), Botany, GeneTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
2Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 2Per-year citation counts (last 5 years)
- References (count)
-
62Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4281751814 |
|---|---|
| doi | https://doi.org/10.21203/rs.3.rs-1695549/v1 |
| ids.doi | https://doi.org/10.21203/rs.3.rs-1695549/v1 |
| ids.openalex | https://openalex.org/W4281751814 |
| fwci | 0.2920593 |
| type | preprint |
| title | metaSpectraST: an unsupervised and database-independent analysis workflow for metaproteomic MS/MS data using spectrum clustering |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10519 |
| topics[0].field.id | https://openalex.org/fields/16 |
| topics[0].field.display_name | Chemistry |
| topics[0].score | 0.9987999796867371 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1607 |
| topics[0].subfield.display_name | Spectroscopy |
| topics[0].display_name | Advanced Proteomics Techniques and Applications |
| topics[1].id | https://openalex.org/T10836 |
| topics[1].field.id | https://openalex.org/fields/13 |
| topics[1].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[1].score | 0.9925000071525574 |
| topics[1].domain.id | https://openalex.org/domains/1 |
| topics[1].domain.display_name | Life Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1312 |
| topics[1].subfield.display_name | Molecular Biology |
| topics[1].display_name | Metabolomics and Mass Spectrometry Studies |
| topics[2].id | https://openalex.org/T10015 |
| topics[2].field.id | https://openalex.org/fields/13 |
| topics[2].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[2].score | 0.9871000051498413 |
| topics[2].domain.id | https://openalex.org/domains/1 |
| topics[2].domain.display_name | Life Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1312 |
| topics[2].subfield.display_name | Molecular Biology |
| topics[2].display_name | Genomics and Phylogenetic Studies |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C199465337 |
| concepts[0].level | 4 |
| concepts[0].score | 0.9232568740844727 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q6823168 |
| concepts[0].display_name | Metaproteomics |
| concepts[1].id | https://openalex.org/C104397665 |
| concepts[1].level | 2 |
| concepts[1].score | 0.5868057012557983 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q860947 |
| concepts[1].display_name | Proteome |
| concepts[2].id | https://openalex.org/C15151743 |
| concepts[2].level | 3 |
| concepts[2].score | 0.5784518718719482 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q903778 |
| concepts[2].display_name | Metagenomics |
| concepts[3].id | https://openalex.org/C73555534 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5289528369903564 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q622825 |
| concepts[3].display_name | Cluster analysis |
| concepts[4].id | https://openalex.org/C70721500 |
| concepts[4].level | 1 |
| concepts[4].score | 0.5220551490783691 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q177005 |
| concepts[4].display_name | Computational biology |
| concepts[5].id | https://openalex.org/C86803240 |
| concepts[5].level | 0 |
| concepts[5].score | 0.5163472890853882 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[5].display_name | Biology |
| concepts[6].id | https://openalex.org/C10010492 |
| concepts[6].level | 4 |
| concepts[6].score | 0.4792073667049408 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q3142557 |
| concepts[6].display_name | Protein sequencing |
| concepts[7].id | https://openalex.org/C143121216 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4583780765533447 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q1330402 |
| concepts[7].display_name | Microbiome |
| concepts[8].id | https://openalex.org/C116834253 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4574209749698639 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q2039217 |
| concepts[8].display_name | Identification (biology) |
| concepts[9].id | https://openalex.org/C2776214188 |
| concepts[9].level | 2 |
| concepts[9].score | 0.4290008842945099 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q408386 |
| concepts[9].display_name | Inference |
| concepts[10].id | https://openalex.org/C103278499 |
| concepts[10].level | 3 |
| concepts[10].score | 0.4137251079082489 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q254465 |
| concepts[10].display_name | Similarity (geometry) |
| concepts[11].id | https://openalex.org/C41008148 |
| concepts[11].level | 0 |
| concepts[11].score | 0.3828660845756531 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[11].display_name | Computer science |
| concepts[12].id | https://openalex.org/C60644358 |
| concepts[12].level | 1 |
| concepts[12].score | 0.3393406271934509 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q128570 |
| concepts[12].display_name | Bioinformatics |
| concepts[13].id | https://openalex.org/C154945302 |
| concepts[13].level | 1 |
| concepts[13].score | 0.29039156436920166 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[13].display_name | Artificial intelligence |
| concepts[14].id | https://openalex.org/C167625842 |
| concepts[14].level | 3 |
| concepts[14].score | 0.2220315933227539 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q899763 |
| concepts[14].display_name | Peptide sequence |
| concepts[15].id | https://openalex.org/C54355233 |
| concepts[15].level | 1 |
| concepts[15].score | 0.1256955862045288 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q7162 |
| concepts[15].display_name | Genetics |
| concepts[16].id | https://openalex.org/C115961682 |
| concepts[16].level | 2 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q860623 |
| concepts[16].display_name | Image (mathematics) |
| concepts[17].id | https://openalex.org/C59822182 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q441 |
| concepts[17].display_name | Botany |
| concepts[18].id | https://openalex.org/C104317684 |
| concepts[18].level | 2 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q7187 |
| concepts[18].display_name | Gene |
| keywords[0].id | https://openalex.org/keywords/metaproteomics |
| keywords[0].score | 0.9232568740844727 |
| keywords[0].display_name | Metaproteomics |
| keywords[1].id | https://openalex.org/keywords/proteome |
| keywords[1].score | 0.5868057012557983 |
| keywords[1].display_name | Proteome |
| keywords[2].id | https://openalex.org/keywords/metagenomics |
| keywords[2].score | 0.5784518718719482 |
| keywords[2].display_name | Metagenomics |
| keywords[3].id | https://openalex.org/keywords/cluster-analysis |
| keywords[3].score | 0.5289528369903564 |
| keywords[3].display_name | Cluster analysis |
| keywords[4].id | https://openalex.org/keywords/computational-biology |
| keywords[4].score | 0.5220551490783691 |
| keywords[4].display_name | Computational biology |
| keywords[5].id | https://openalex.org/keywords/biology |
| keywords[5].score | 0.5163472890853882 |
| keywords[5].display_name | Biology |
| keywords[6].id | https://openalex.org/keywords/protein-sequencing |
| keywords[6].score | 0.4792073667049408 |
| keywords[6].display_name | Protein sequencing |
| keywords[7].id | https://openalex.org/keywords/microbiome |
| keywords[7].score | 0.4583780765533447 |
| keywords[7].display_name | Microbiome |
| keywords[8].id | https://openalex.org/keywords/identification |
| keywords[8].score | 0.4574209749698639 |
| keywords[8].display_name | Identification (biology) |
| keywords[9].id | https://openalex.org/keywords/inference |
| keywords[9].score | 0.4290008842945099 |
| keywords[9].display_name | Inference |
| keywords[10].id | https://openalex.org/keywords/similarity |
| keywords[10].score | 0.4137251079082489 |
| keywords[10].display_name | Similarity (geometry) |
| keywords[11].id | https://openalex.org/keywords/computer-science |
| keywords[11].score | 0.3828660845756531 |
| keywords[11].display_name | Computer science |
| keywords[12].id | https://openalex.org/keywords/bioinformatics |
| keywords[12].score | 0.3393406271934509 |
| keywords[12].display_name | Bioinformatics |
| keywords[13].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[13].score | 0.29039156436920166 |
| keywords[13].display_name | Artificial intelligence |
| keywords[14].id | https://openalex.org/keywords/peptide-sequence |
| keywords[14].score | 0.2220315933227539 |
| keywords[14].display_name | Peptide sequence |
| keywords[15].id | https://openalex.org/keywords/genetics |
| keywords[15].score | 0.1256955862045288 |
| keywords[15].display_name | Genetics |
| language | en |
| locations[0].id | doi:10.21203/rs.3.rs-1695549/v1 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306402450 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Research Square (Research Square) |
| locations[0].source.host_organization | https://openalex.org/I4210096694 |
| locations[0].source.host_organization_name | Research Square (United States) |
| locations[0].source.host_organization_lineage | https://openalex.org/I4210096694 |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.researchsquare.com/article/rs-1695549/latest.pdf |
| locations[0].version | acceptedVersion |
| locations[0].raw_type | posted-content |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.21203/rs.3.rs-1695549/v1 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5045310678 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-5818-1954 |
| authorships[0].author.display_name | Chunlin Hao |
| authorships[0].countries | HK, YE |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I118692353 |
| authorships[0].affiliations[0].raw_affiliation_string | University of Science and Technology |
| authorships[0].affiliations[1].institution_ids | https://openalex.org/I200769079, https://openalex.org/I889458895 |
| authorships[0].affiliations[1].raw_affiliation_string | The Hong Kong University of Science and Technology |
| authorships[0].affiliations[2].institution_ids | https://openalex.org/I168719708 |
| authorships[0].affiliations[2].raw_affiliation_string | City University of Hong Kong |
| authorships[0].institutions[0].id | https://openalex.org/I168719708 |
| authorships[0].institutions[0].ror | https://ror.org/03q8dnn23 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I168719708 |
| authorships[0].institutions[0].country_code | HK |
| authorships[0].institutions[0].display_name | City University of Hong Kong |
| authorships[0].institutions[1].id | https://openalex.org/I200769079 |
| authorships[0].institutions[1].ror | https://ror.org/00q4vv597 |
| authorships[0].institutions[1].type | education |
| authorships[0].institutions[1].lineage | https://openalex.org/I200769079 |
| authorships[0].institutions[1].country_code | HK |
| authorships[0].institutions[1].display_name | Hong Kong University of Science and Technology |
| authorships[0].institutions[2].id | https://openalex.org/I889458895 |
| authorships[0].institutions[2].ror | https://ror.org/02zhqgq86 |
| authorships[0].institutions[2].type | education |
| authorships[0].institutions[2].lineage | https://openalex.org/I889458895 |
| authorships[0].institutions[2].country_code | HK |
| authorships[0].institutions[2].display_name | University of Hong Kong |
| authorships[0].institutions[3].id | https://openalex.org/I118692353 |
| authorships[0].institutions[3].ror | https://ror.org/05bj7sh33 |
| authorships[0].institutions[3].type | education |
| authorships[0].institutions[3].lineage | https://openalex.org/I118692353 |
| authorships[0].institutions[3].country_code | YE |
| authorships[0].institutions[3].display_name | University of Science and Technology |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Chunlin Hao |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | City University of Hong Kong, The Hong Kong University of Science and Technology, University of Science and Technology |
| authorships[1].author.id | https://openalex.org/A5005370974 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-8063-3259 |
| authorships[1].author.display_name | Joshua E. Elias |
| authorships[1].countries | HK, US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I4210100286 |
| authorships[1].affiliations[0].raw_affiliation_string | CZ Biohub |
| authorships[1].affiliations[1].institution_ids | https://openalex.org/I168719708 |
| authorships[1].affiliations[1].raw_affiliation_string | School of Energy and Environment, City University of Hong Kong, Hong Kong SAR, China |
| authorships[1].institutions[0].id | https://openalex.org/I168719708 |
| authorships[1].institutions[0].ror | https://ror.org/03q8dnn23 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I168719708 |
| authorships[1].institutions[0].country_code | HK |
| authorships[1].institutions[0].display_name | City University of Hong Kong |
| authorships[1].institutions[1].id | https://openalex.org/I4210100286 |
| authorships[1].institutions[1].ror | https://ror.org/00knt4f32 |
| authorships[1].institutions[1].type | facility |
| authorships[1].institutions[1].lineage | https://openalex.org/I180670191, https://openalex.org/I4210100286, https://openalex.org/I4210121800, https://openalex.org/I95457486, https://openalex.org/I97018004 |
| authorships[1].institutions[1].country_code | US |
| authorships[1].institutions[1].display_name | Chan Zuckerberg Biohub San Francisco |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Joshua E. Elias |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | CZ Biohub, School of Energy and Environment, City University of Hong Kong, Hong Kong SAR, China |
| authorships[2].author.id | https://openalex.org/A5016834339 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-0911-5317 |
| authorships[2].author.display_name | Patrick K. H. Lee |
| authorships[2].countries | HK, YE |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I168719708 |
| authorships[2].affiliations[0].raw_affiliation_string | City University of Hong Kong |
| authorships[2].affiliations[1].institution_ids | https://openalex.org/I200769079, https://openalex.org/I889458895 |
| authorships[2].affiliations[1].raw_affiliation_string | The Hong Kong University of Science and Technology |
| authorships[2].affiliations[2].institution_ids | https://openalex.org/I118692353 |
| authorships[2].affiliations[2].raw_affiliation_string | University of Science and Technology |
| authorships[2].institutions[0].id | https://openalex.org/I168719708 |
| authorships[2].institutions[0].ror | https://ror.org/03q8dnn23 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I168719708 |
| authorships[2].institutions[0].country_code | HK |
| authorships[2].institutions[0].display_name | City University of Hong Kong |
| authorships[2].institutions[1].id | https://openalex.org/I200769079 |
| authorships[2].institutions[1].ror | https://ror.org/00q4vv597 |
| authorships[2].institutions[1].type | education |
| authorships[2].institutions[1].lineage | https://openalex.org/I200769079 |
| authorships[2].institutions[1].country_code | HK |
| authorships[2].institutions[1].display_name | Hong Kong University of Science and Technology |
| authorships[2].institutions[2].id | https://openalex.org/I889458895 |
| authorships[2].institutions[2].ror | https://ror.org/02zhqgq86 |
| authorships[2].institutions[2].type | education |
| authorships[2].institutions[2].lineage | https://openalex.org/I889458895 |
| authorships[2].institutions[2].country_code | HK |
| authorships[2].institutions[2].display_name | University of Hong Kong |
| authorships[2].institutions[3].id | https://openalex.org/I118692353 |
| authorships[2].institutions[3].ror | https://ror.org/05bj7sh33 |
| authorships[2].institutions[3].type | education |
| authorships[2].institutions[3].lineage | https://openalex.org/I118692353 |
| authorships[2].institutions[3].country_code | YE |
| authorships[2].institutions[3].display_name | University of Science and Technology |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Patrick K. H. Lee |
| authorships[2].is_corresponding | True |
| authorships[2].raw_affiliation_strings | City University of Hong Kong, The Hong Kong University of Science and Technology, University of Science and Technology |
| authorships[3].author.id | https://openalex.org/A5010704175 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-7928-0364 |
| authorships[3].author.display_name | Henry Lam |
| authorships[3].countries | HK |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I200769079, https://openalex.org/I889458895 |
| authorships[3].affiliations[0].raw_affiliation_string | Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Hong Kong SAR, China |
| authorships[3].institutions[0].id | https://openalex.org/I200769079 |
| authorships[3].institutions[0].ror | https://ror.org/00q4vv597 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I200769079 |
| authorships[3].institutions[0].country_code | HK |
| authorships[3].institutions[0].display_name | Hong Kong University of Science and Technology |
| authorships[3].institutions[1].id | https://openalex.org/I889458895 |
| authorships[3].institutions[1].ror | https://ror.org/02zhqgq86 |
| authorships[3].institutions[1].type | education |
| authorships[3].institutions[1].lineage | https://openalex.org/I889458895 |
| authorships[3].institutions[1].country_code | HK |
| authorships[3].institutions[1].display_name | University of Hong Kong |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Henry Lam |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Hong Kong SAR, China |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.researchsquare.com/article/rs-1695549/latest.pdf |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | metaSpectraST: an unsupervised and database-independent analysis workflow for metaproteomic MS/MS data using spectrum clustering |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10519 |
| primary_topic.field.id | https://openalex.org/fields/16 |
| primary_topic.field.display_name | Chemistry |
| primary_topic.score | 0.9987999796867371 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1607 |
| primary_topic.subfield.display_name | Spectroscopy |
| primary_topic.display_name | Advanced Proteomics Techniques and Applications |
| related_works | https://openalex.org/W4211121339, https://openalex.org/W2171309014, https://openalex.org/W3139084279, https://openalex.org/W4368360101, https://openalex.org/W1577826155, https://openalex.org/W3149998985, https://openalex.org/W125827869, https://openalex.org/W1983206417, https://openalex.org/W3201900227, https://openalex.org/W2588542328 |
| cited_by_count | 2 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 2 |
| locations_count | 1 |
| best_oa_location.id | doi:10.21203/rs.3.rs-1695549/v1 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306402450 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Research Square (Research Square) |
| best_oa_location.source.host_organization | https://openalex.org/I4210096694 |
| best_oa_location.source.host_organization_name | Research Square (United States) |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I4210096694 |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.researchsquare.com/article/rs-1695549/latest.pdf |
| best_oa_location.version | acceptedVersion |
| best_oa_location.raw_type | posted-content |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.21203/rs.3.rs-1695549/v1 |
| primary_location.id | doi:10.21203/rs.3.rs-1695549/v1 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306402450 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Research Square (Research Square) |
| primary_location.source.host_organization | https://openalex.org/I4210096694 |
| primary_location.source.host_organization_name | Research Square (United States) |
| primary_location.source.host_organization_lineage | https://openalex.org/I4210096694 |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.researchsquare.com/article/rs-1695549/latest.pdf |
| primary_location.version | acceptedVersion |
| primary_location.raw_type | posted-content |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.21203/rs.3.rs-1695549/v1 |
| publication_date | 2022-05-31 |
| publication_year | 2022 |
| referenced_works | https://openalex.org/W2735061408, https://openalex.org/W2939196874, https://openalex.org/W2200936799, https://openalex.org/W3043424179, https://openalex.org/W1553112665, https://openalex.org/W2766218091, https://openalex.org/W2773610445, https://openalex.org/W2461711360, https://openalex.org/W2893957366, https://openalex.org/W2963984501, https://openalex.org/W2671751787, https://openalex.org/W2182756053, https://openalex.org/W2026433130, https://openalex.org/W2143011057, https://openalex.org/W2097804645, https://openalex.org/W1986873950, https://openalex.org/W2179747797, https://openalex.org/W1984566266, https://openalex.org/W2125826054, https://openalex.org/W2774072836, https://openalex.org/W2113679889, https://openalex.org/W2103901746, https://openalex.org/W1878521557, https://openalex.org/W2938868597, https://openalex.org/W2950785362, https://openalex.org/W2736920791, https://openalex.org/W2112364185, https://openalex.org/W2950464960, https://openalex.org/W1883997870, https://openalex.org/W2592811885, https://openalex.org/W2107018762, https://openalex.org/W2990618091, https://openalex.org/W2048673910, https://openalex.org/W2156125289, https://openalex.org/W2045204781, https://openalex.org/W2949841808, https://openalex.org/W2158714788, https://openalex.org/W2124166542, https://openalex.org/W2027974246, https://openalex.org/W2096826129, https://openalex.org/W2039380477, https://openalex.org/W2089273345, https://openalex.org/W2112078820, https://openalex.org/W2102572519, https://openalex.org/W2015556811, https://openalex.org/W2785621465, https://openalex.org/W2930099314, https://openalex.org/W3163198128, https://openalex.org/W2061219514, https://openalex.org/W2060964838, https://openalex.org/W1970777915, https://openalex.org/W2053039168, https://openalex.org/W2952954633, https://openalex.org/W2197368019, https://openalex.org/W2071348526, https://openalex.org/W2745006471, https://openalex.org/W3009533854, https://openalex.org/W2023506796, https://openalex.org/W2944075192, https://openalex.org/W1558190356, https://openalex.org/W1493206838, https://openalex.org/W3174993126 |
| referenced_works_count | 62 |
| abstract_inverted_index.a | 13, 238 |
| abstract_inverted_index.It | 275 |
| abstract_inverted_index.We | 136, 159 |
| abstract_inverted_index.an | 139 |
| abstract_inverted_index.as | 237, 307 |
| abstract_inverted_index.be | 187, 235 |
| abstract_inverted_index.by | 51, 106, 148, 285 |
| abstract_inverted_index.in | 26, 46, 110, 217, 280 |
| abstract_inverted_index.is | 122, 214, 293 |
| abstract_inverted_index.it | 12 |
| abstract_inverted_index.of | 7, 23, 37, 60, 71, 80, 94, 102, 116, 130, 168, 179, 183, 227, 257, 271, 288 |
| abstract_inverted_index.on | 34, 68, 155 |
| abstract_inverted_index.or | 84, 92, 269 |
| abstract_inverted_index.to | 16, 41, 89, 144, 162, 194, 207, 295 |
| abstract_inverted_index.Due | 88 |
| abstract_inverted_index.The | 2 |
| abstract_inverted_index.all | 287 |
| abstract_inverted_index.and | 5, 18, 54, 57, 99, 119, 124, 141, 192, 201, 221, 291, 302 |
| abstract_inverted_index.any | 203 |
| abstract_inverted_index.are | 66 |
| abstract_inverted_index.for | 240, 263 |
| abstract_inverted_index.gut | 229 |
| abstract_inverted_index.the | 8, 20, 27, 38, 47, 61, 69, 81, 90, 100, 111, 128, 180, 196, 208, 219, 223, 242, 261, 265, 272, 281, 298 |
| abstract_inverted_index.two | 169 |
| abstract_inverted_index.able | 294 |
| abstract_inverted_index.also | 234 |
| abstract_inverted_index.from | 77, 85, 166, 246 |
| abstract_inverted_index.high | 3 |
| abstract_inverted_index.make | 11 |
| abstract_inverted_index.mice | 172, 185 |
| abstract_inverted_index.more | 215 |
| abstract_inverted_index.need | 262 |
| abstract_inverted_index.rely | 33 |
| abstract_inverted_index.same | 82 |
| abstract_inverted_index.them | 289 |
| abstract_inverted_index.this | 113 |
| abstract_inverted_index.thus | 292 |
| abstract_inverted_index.tool | 239 |
| abstract_inverted_index.used | 193, 236 |
| abstract_inverted_index.wide | 249 |
| abstract_inverted_index.with | 248, 309 |
| abstract_inverted_index.MS/MS | 39, 152, 273, 283 |
| abstract_inverted_index.These | 64 |
| abstract_inverted_index.after | 174 |
| abstract_inverted_index.based | 154 |
| abstract_inverted_index.could | 186, 233 |
| abstract_inverted_index.fecal | 163 |
| abstract_inverted_index.large | 21 |
| abstract_inverted_index.mouse | 228 |
| abstract_inverted_index.rapid | 255 |
| abstract_inverted_index.right | 173 |
| abstract_inverted_index.short | 44 |
| abstract_inverted_index.their | 42, 156, 304 |
| abstract_inverted_index.these | 95 |
| abstract_inverted_index.which | 126 |
| abstract_inverted_index.across | 132 |
| abstract_inverted_index.better | 296 |
| abstract_inverted_index.either | 76 |
| abstract_inverted_index.first, | 290 |
| abstract_inverted_index.mother | 171 |
| abstract_inverted_index.number | 22 |
| abstract_inverted_index.public | 86 |
| abstract_inverted_index.subtle | 224 |
| abstract_inverted_index.analyze | 145 |
| abstract_inverted_index.applied | 160 |
| abstract_inverted_index.between | 199 |
| abstract_inverted_index.changes | 226 |
| abstract_inverted_index.complex | 299 |
| abstract_inverted_index.derived | 75 |
| abstract_inverted_index.enables | 254 |
| abstract_inverted_index.hinders | 127 |
| abstract_inverted_index.largely | 32 |
| abstract_inverted_index.overall | 197 |
| abstract_inverted_index.peptide | 117, 190 |
| abstract_inverted_index.process | 115 |
| abstract_inverted_index.profile | 297 |
| abstract_inverted_index.protein | 52, 72, 96, 120, 266 |
| abstract_inverted_index.sample, | 83 |
| abstract_inverted_index.samples | 147, 164, 200, 220, 247, 259 |
| abstract_inverted_index.species | 109 |
| abstract_inverted_index.spectra | 40, 153, 284 |
| abstract_inverted_index.without | 189, 260 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.Compared | 206 |
| abstract_inverted_index.Results: | 135 |
| abstract_inverted_index.accurate | 35 |
| abstract_inverted_index.analysis | 59 |
| abstract_inverted_index.changes, | 306 |
| abstract_inverted_index.compared | 308 |
| abstract_inverted_index.database | 268 |
| abstract_inverted_index.detected | 62 |
| abstract_inverted_index.digested | 48 |
| abstract_inverted_index.evaluate | 195 |
| abstract_inverted_index.followed | 50 |
| abstract_inverted_index.identify | 17 |
| abstract_inverted_index.markers. | 205 |
| abstract_inverted_index.multiple | 133 |
| abstract_inverted_index.observed | 151 |
| abstract_inverted_index.obtained | 188 |
| abstract_inverted_index.peptides | 45 |
| abstract_inverted_index.profiles | 178 |
| abstract_inverted_index.proteins | 24, 104 |
| abstract_inverted_index.proteome | 177 |
| abstract_inverted_index.quantify | 19 |
| abstract_inverted_index.samples, | 49 |
| abstract_inverted_index.samples. | 134 |
| abstract_inverted_index.sequence | 73, 97, 267 |
| abstract_inverted_index.spectra. | 274 |
| abstract_inverted_index.spectral | 157 |
| abstract_inverted_index.suitable | 243 |
| abstract_inverted_index.weaning. | 175 |
| abstract_inverted_index.workflow | 143 |
| abstract_inverted_index.analysis, | 212 |
| abstract_inverted_index.bacterial | 108 |
| abstract_inverted_index.challenge | 15 |
| abstract_inverted_index.collected | 165 |
| abstract_inverted_index.community | 10 |
| abstract_inverted_index.contained | 279 |
| abstract_inverted_index.databases | 74 |
| abstract_inverted_index.dependent | 67 |
| abstract_inverted_index.detecting | 222 |
| abstract_inverted_index.developed | 137 |
| abstract_inverted_index.different | 107, 170, 184 |
| abstract_inverted_index.diversity | 4 |
| abstract_inverted_index.expressed | 25, 105 |
| abstract_inverted_index.highlight | 202, 303 |
| abstract_inverted_index.inference | 53, 121 |
| abstract_inverted_index.maximally | 276 |
| abstract_inverted_index.microbial | 9, 181, 300 |
| abstract_inverted_index.preserves | 277 |
| abstract_inverted_index.profiling | 256 |
| abstract_inverted_index.proteins. | 63 |
| abstract_inverted_index.selecting | 241 |
| abstract_inverted_index.taxonomic | 56 |
| abstract_inverted_index.approaches | 31, 65 |
| abstract_inverted_index.biological | 244 |
| abstract_inverted_index.clustering | 149, 286 |
| abstract_inverted_index.community, | 112 |
| abstract_inverted_index.community. | 28 |
| abstract_inverted_index.comparison | 129 |
| abstract_inverted_index.complexity | 6 |
| abstract_inverted_index.databases, | 98 |
| abstract_inverted_index.formidable | 14 |
| abstract_inverted_index.functional | 58, 305 |
| abstract_inverted_index.homologous | 103 |
| abstract_inverted_index.microbiome | 225 |
| abstract_inverted_index.replicates | 245 |
| abstract_inverted_index.sequencing | 79 |
| abstract_inverted_index.similarity | 198 |
| abstract_inverted_index.subsequent | 55 |
| abstract_inverted_index.successful | 216 |
| abstract_inverted_index.variation. | 251 |
| abstract_inverted_index.Background: | 1 |
| abstract_inverted_index.approaches. | 311 |
| abstract_inverted_index.challenging | 123 |
| abstract_inverted_index.classifying | 218 |
| abstract_inverted_index.communities | 182, 301 |
| abstract_inverted_index.information | 278 |
| abstract_inverted_index.littermates | 167 |
| abstract_inverted_index.metagenomic | 78 |
| abstract_inverted_index.microbiomes | 230 |
| abstract_inverted_index.similarity. | 158 |
| abstract_inverted_index.Conclusions: | 252 |
| abstract_inverted_index.Conventional | 29 |
| abstract_inverted_index.Quantitative | 176 |
| abstract_inverted_index.availability | 70 |
| abstract_inverted_index.constructing | 264 |
| abstract_inverted_index.conventional | 209, 310 |
| abstract_inverted_index.error-prone, | 125 |
| abstract_inverted_index.experimental | 282 |
| abstract_inverted_index.unsupervised | 140 |
| abstract_inverted_index.computational | 114 |
| abstract_inverted_index.corresponding | 43 |
| abstract_inverted_index.imperfections | 93 |
| abstract_inverted_index.metaSpectraST | 161, 213, 232, 253 |
| abstract_inverted_index.metaproteomes | 131 |
| abstract_inverted_index.metaproteomic | 146, 258 |
| abstract_inverted_index.post-weaning. | 231 |
| abstract_inverted_index.preponderance | 101 |
| abstract_inverted_index.repositories. | 87 |
| abstract_inverted_index.experimentally | 150 |
| abstract_inverted_index.identification | 36, 118, 270 |
| abstract_inverted_index.incompleteness | 91 |
| abstract_inverted_index.metaSpectraST, | 138 |
| abstract_inverted_index.metaproteomics | 30, 211 |
| abstract_inverted_index.differentiating | 204 |
| abstract_inverted_index.identification, | 191 |
| abstract_inverted_index.inter-individual | 250 |
| abstract_inverted_index.database-dependent | 210 |
| abstract_inverted_index.database-independent | 142 |
| cited_by_percentile_year.max | 97 |
| cited_by_percentile_year.min | 95 |
| corresponding_author_ids | https://openalex.org/A5016834339 |
| countries_distinct_count | 3 |
| institutions_distinct_count | 4 |
| corresponding_institution_ids | https://openalex.org/I118692353, https://openalex.org/I168719708, https://openalex.org/I200769079, https://openalex.org/I889458895 |
| citation_normalized_percentile.value | 0.49186992 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |