Metasurface-Based Image Classification Using Diffractive Deep Neural Network Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.3390/nano14221812
The computer-assisted inverse design of photonic computing, especially by leveraging artificial intelligence algorithms, offers great convenience to accelerate the speed of development and improve calculation accuracy. However, traditional thickness-based modulation methods are hindered by large volume and difficult fabrication process, making it hard to meet the data-driven requirements of flexible light modulation. Here, we propose a diffractive deep neural network (D2NN) framework based on a three-layer all-dielectric phased transmitarray as hidden layers, which can perform the classification of handwritten digits. By tailoring the radius of a silicon nanodisk of a meta-atom, the metasurface can realize the phase profile calculated by D2NN and maintain a relative high transmittance of 0.9 at a wavelength of 600 nm. The designed image classifier consists of three layers of phase-only metasurfaces, each of which contains 1024 units, mimicking a fully connected neural network through the diffraction of light fields. The classification task of handwriting digits from the ‘0’ to ‘5’ dataset is verified, with an accuracy of over 90% on the blind test dataset, as well as demonstrated by the full-wave simulation. Furthermore, the performance of the more complex animal image classification task is also validated by increasing the number of neurons to enhance the connectivity of the neural network. This study may provide a possible solution for practical applications such as biomedical detection, image processing, and machine vision based on all-optical computing.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3390/nano14221812
- OA Status
- gold
- Cited By
- 2
- References
- 54
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4404295879
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4404295879Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/nano14221812Digital Object Identifier
- Title
-
Metasurface-Based Image Classification Using Diffractive Deep Neural NetworkWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-11-12Full publication date if available
- Authors
-
Kaiyang Cheng, Cong Deng, Fengyu Ye, Hongqiang Li, Fei Shen, Yuancheng Fan, Yubin GongList of authors in order
- Landing page
-
https://doi.org/10.3390/nano14221812Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.3390/nano14221812Direct OA link when available
- Concepts
-
Artificial neural network, Artificial intelligence, Image (mathematics), Deep learning, Computer science, Contextual image classification, Pattern recognition (psychology), Geology, Computer vision, Remote sensingTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
2Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 2Per-year citation counts (last 5 years)
- References (count)
-
54Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4404295879 |
|---|---|
| doi | https://doi.org/10.3390/nano14221812 |
| ids.doi | https://doi.org/10.3390/nano14221812 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/39591053 |
| ids.openalex | https://openalex.org/W4404295879 |
| fwci | 1.2775571 |
| type | article |
| title | Metasurface-Based Image Classification Using Diffractive Deep Neural Network |
| biblio.issue | 22 |
| biblio.volume | 14 |
| biblio.last_page | 1812 |
| biblio.first_page | 1812 |
| topics[0].id | https://openalex.org/T12611 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9998000264167786 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Neural Networks and Reservoir Computing |
| topics[1].id | https://openalex.org/T10245 |
| topics[1].field.id | https://openalex.org/fields/25 |
| topics[1].field.display_name | Materials Science |
| topics[1].score | 0.9779999852180481 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2504 |
| topics[1].subfield.display_name | Electronic, Optical and Magnetic Materials |
| topics[1].display_name | Metamaterials and Metasurfaces Applications |
| topics[2].id | https://openalex.org/T10502 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9753999710083008 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2208 |
| topics[2].subfield.display_name | Electrical and Electronic Engineering |
| topics[2].display_name | Advanced Memory and Neural Computing |
| is_xpac | False |
| apc_list.value | 2400 |
| apc_list.currency | CHF |
| apc_list.value_usd | 2598 |
| apc_paid.value | 2400 |
| apc_paid.currency | CHF |
| apc_paid.value_usd | 2598 |
| concepts[0].id | https://openalex.org/C50644808 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6615625023841858 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[0].display_name | Artificial neural network |
| concepts[1].id | https://openalex.org/C154945302 |
| concepts[1].level | 1 |
| concepts[1].score | 0.5408146977424622 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[1].display_name | Artificial intelligence |
| concepts[2].id | https://openalex.org/C115961682 |
| concepts[2].level | 2 |
| concepts[2].score | 0.50199294090271 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q860623 |
| concepts[2].display_name | Image (mathematics) |
| concepts[3].id | https://openalex.org/C108583219 |
| concepts[3].level | 2 |
| concepts[3].score | 0.49395114183425903 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[3].display_name | Deep learning |
| concepts[4].id | https://openalex.org/C41008148 |
| concepts[4].level | 0 |
| concepts[4].score | 0.48281392455101013 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[4].display_name | Computer science |
| concepts[5].id | https://openalex.org/C75294576 |
| concepts[5].level | 3 |
| concepts[5].score | 0.46659398078918457 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q5165192 |
| concepts[5].display_name | Contextual image classification |
| concepts[6].id | https://openalex.org/C153180895 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4571537673473358 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[6].display_name | Pattern recognition (psychology) |
| concepts[7].id | https://openalex.org/C127313418 |
| concepts[7].level | 0 |
| concepts[7].score | 0.356862872838974 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q1069 |
| concepts[7].display_name | Geology |
| concepts[8].id | https://openalex.org/C31972630 |
| concepts[8].level | 1 |
| concepts[8].score | 0.3498077392578125 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[8].display_name | Computer vision |
| concepts[9].id | https://openalex.org/C62649853 |
| concepts[9].level | 1 |
| concepts[9].score | 0.3411622643470764 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q199687 |
| concepts[9].display_name | Remote sensing |
| keywords[0].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[0].score | 0.6615625023841858 |
| keywords[0].display_name | Artificial neural network |
| keywords[1].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[1].score | 0.5408146977424622 |
| keywords[1].display_name | Artificial intelligence |
| keywords[2].id | https://openalex.org/keywords/image |
| keywords[2].score | 0.50199294090271 |
| keywords[2].display_name | Image (mathematics) |
| keywords[3].id | https://openalex.org/keywords/deep-learning |
| keywords[3].score | 0.49395114183425903 |
| keywords[3].display_name | Deep learning |
| keywords[4].id | https://openalex.org/keywords/computer-science |
| keywords[4].score | 0.48281392455101013 |
| keywords[4].display_name | Computer science |
| keywords[5].id | https://openalex.org/keywords/contextual-image-classification |
| keywords[5].score | 0.46659398078918457 |
| keywords[5].display_name | Contextual image classification |
| keywords[6].id | https://openalex.org/keywords/pattern-recognition |
| keywords[6].score | 0.4571537673473358 |
| keywords[6].display_name | Pattern recognition (psychology) |
| keywords[7].id | https://openalex.org/keywords/geology |
| keywords[7].score | 0.356862872838974 |
| keywords[7].display_name | Geology |
| keywords[8].id | https://openalex.org/keywords/computer-vision |
| keywords[8].score | 0.3498077392578125 |
| keywords[8].display_name | Computer vision |
| keywords[9].id | https://openalex.org/keywords/remote-sensing |
| keywords[9].score | 0.3411622643470764 |
| keywords[9].display_name | Remote sensing |
| language | en |
| locations[0].id | doi:10.3390/nano14221812 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2764646681 |
| locations[0].source.issn | 2079-4991 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2079-4991 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Nanomaterials |
| locations[0].source.host_organization | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Nanomaterials |
| locations[0].landing_page_url | https://doi.org/10.3390/nano14221812 |
| locations[1].id | pmid:39591053 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Nanomaterials (Basel, Switzerland) |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/39591053 |
| locations[2].id | pmh:oai:doaj.org/article:8c077fdaec9a4d1dbc4a102c93706521 |
| locations[2].is_oa | False |
| locations[2].source.id | https://openalex.org/S4306401280 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[2].source.host_organization | |
| locations[2].source.host_organization_name | |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | article |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Nanomaterials, Vol 14, Iss 22, p 1812 (2024) |
| locations[2].landing_page_url | https://doaj.org/article/8c077fdaec9a4d1dbc4a102c93706521 |
| locations[3].id | pmh:oai:pubmedcentral.nih.gov:11597900 |
| locations[3].is_oa | True |
| locations[3].source.id | https://openalex.org/S2764455111 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | False |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | PubMed Central |
| locations[3].source.host_organization | https://openalex.org/I1299303238 |
| locations[3].source.host_organization_name | National Institutes of Health |
| locations[3].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[3].license | other-oa |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | Text |
| locations[3].license_id | https://openalex.org/licenses/other-oa |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | Nanomaterials (Basel) |
| locations[3].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/11597900 |
| indexed_in | crossref, doaj, pubmed |
| authorships[0].author.id | https://openalex.org/A5082176493 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-1652-4338 |
| authorships[0].author.display_name | Kaiyang Cheng |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I2799850029 |
| authorships[0].affiliations[0].raw_affiliation_string | International School of Microelectronics, Dongguan University of Technology, Dongguan 523808, China |
| authorships[0].institutions[0].id | https://openalex.org/I2799850029 |
| authorships[0].institutions[0].ror | https://ror.org/01m8p7q42 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I2799850029 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Dongguan University of Technology |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Kaiyang Cheng |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | International School of Microelectronics, Dongguan University of Technology, Dongguan 523808, China |
| authorships[1].author.id | https://openalex.org/A5008695686 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Cong Deng |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I2799850029 |
| authorships[1].affiliations[0].raw_affiliation_string | International School of Microelectronics, Dongguan University of Technology, Dongguan 523808, China |
| authorships[1].institutions[0].id | https://openalex.org/I2799850029 |
| authorships[1].institutions[0].ror | https://ror.org/01m8p7q42 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I2799850029 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Dongguan University of Technology |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Cong Deng |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | International School of Microelectronics, Dongguan University of Technology, Dongguan 523808, China |
| authorships[2].author.id | https://openalex.org/A5102627052 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Fengyu Ye |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I2799850029 |
| authorships[2].affiliations[0].raw_affiliation_string | International School of Microelectronics, Dongguan University of Technology, Dongguan 523808, China |
| authorships[2].institutions[0].id | https://openalex.org/I2799850029 |
| authorships[2].institutions[0].ror | https://ror.org/01m8p7q42 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I2799850029 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Dongguan University of Technology |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Fengyu Ye |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | International School of Microelectronics, Dongguan University of Technology, Dongguan 523808, China |
| authorships[3].author.id | https://openalex.org/A5100621228 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-3534-2604 |
| authorships[3].author.display_name | Hongqiang Li |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I116953780 |
| authorships[3].affiliations[0].raw_affiliation_string | The Institute of Dongguan Tongji University, Dongguan 523808, China |
| authorships[3].affiliations[1].institution_ids | https://openalex.org/I116953780 |
| authorships[3].affiliations[1].raw_affiliation_string | College of Electronic and Information Engineering, Tongji University, Shanghai 200092, China |
| authorships[3].institutions[0].id | https://openalex.org/I116953780 |
| authorships[3].institutions[0].ror | https://ror.org/03rc6as71 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I116953780 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Tongji University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Hongqiang Li |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | College of Electronic and Information Engineering, Tongji University, Shanghai 200092, China, The Institute of Dongguan Tongji University, Dongguan 523808, China |
| authorships[4].author.id | https://openalex.org/A5100608946 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-4805-9189 |
| authorships[4].author.display_name | Fei Shen |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I2799850029 |
| authorships[4].affiliations[0].raw_affiliation_string | International School of Microelectronics, Dongguan University of Technology, Dongguan 523808, China |
| authorships[4].institutions[0].id | https://openalex.org/I2799850029 |
| authorships[4].institutions[0].ror | https://ror.org/01m8p7q42 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I2799850029 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | Dongguan University of Technology |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Fei Shen |
| authorships[4].is_corresponding | True |
| authorships[4].raw_affiliation_strings | International School of Microelectronics, Dongguan University of Technology, Dongguan 523808, China |
| authorships[5].author.id | https://openalex.org/A5066532604 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-7919-4148 |
| authorships[5].author.display_name | Yuancheng Fan |
| authorships[5].countries | CN |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I17145004, https://openalex.org/I890469752 |
| authorships[5].affiliations[0].raw_affiliation_string | Key Laboratory of Light Field Manipulation and Information Acquisition, Ministry of Industry and Information Technology and School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an 710129, China |
| authorships[5].institutions[0].id | https://openalex.org/I890469752 |
| authorships[5].institutions[0].ror | https://ror.org/0385nmy68 |
| authorships[5].institutions[0].type | government |
| authorships[5].institutions[0].lineage | https://openalex.org/I890469752 |
| authorships[5].institutions[0].country_code | CN |
| authorships[5].institutions[0].display_name | Ministry of Industry and Information Technology |
| authorships[5].institutions[1].id | https://openalex.org/I17145004 |
| authorships[5].institutions[1].ror | https://ror.org/01y0j0j86 |
| authorships[5].institutions[1].type | education |
| authorships[5].institutions[1].lineage | https://openalex.org/I17145004 |
| authorships[5].institutions[1].country_code | CN |
| authorships[5].institutions[1].display_name | Northwestern Polytechnical University |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Yuancheng Fan |
| authorships[5].is_corresponding | True |
| authorships[5].raw_affiliation_strings | Key Laboratory of Light Field Manipulation and Information Acquisition, Ministry of Industry and Information Technology and School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an 710129, China |
| authorships[6].author.id | https://openalex.org/A5025099170 |
| authorships[6].author.orcid | https://orcid.org/0000-0003-3014-1309 |
| authorships[6].author.display_name | Yubin Gong |
| authorships[6].countries | CN |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I2799850029 |
| authorships[6].affiliations[0].raw_affiliation_string | International School of Microelectronics, Dongguan University of Technology, Dongguan 523808, China |
| authorships[6].affiliations[1].institution_ids | https://openalex.org/I150229711 |
| authorships[6].affiliations[1].raw_affiliation_string | National Key Laboratory on Vacuum Electronics, University of Electronic Science and Technology of China (UESTC), Chengdu 610054, China |
| authorships[6].institutions[0].id | https://openalex.org/I2799850029 |
| authorships[6].institutions[0].ror | https://ror.org/01m8p7q42 |
| authorships[6].institutions[0].type | education |
| authorships[6].institutions[0].lineage | https://openalex.org/I2799850029 |
| authorships[6].institutions[0].country_code | CN |
| authorships[6].institutions[0].display_name | Dongguan University of Technology |
| authorships[6].institutions[1].id | https://openalex.org/I150229711 |
| authorships[6].institutions[1].ror | https://ror.org/04qr3zq92 |
| authorships[6].institutions[1].type | education |
| authorships[6].institutions[1].lineage | https://openalex.org/I150229711 |
| authorships[6].institutions[1].country_code | CN |
| authorships[6].institutions[1].display_name | University of Electronic Science and Technology of China |
| authorships[6].author_position | last |
| authorships[6].raw_author_name | Yubin Gong |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | International School of Microelectronics, Dongguan University of Technology, Dongguan 523808, China, National Key Laboratory on Vacuum Electronics, University of Electronic Science and Technology of China (UESTC), Chengdu 610054, China |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.3390/nano14221812 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Metasurface-Based Image Classification Using Diffractive Deep Neural Network |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T12611 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9998000264167786 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Neural Networks and Reservoir Computing |
| related_works | https://openalex.org/W4375867731, https://openalex.org/W2611989081, https://openalex.org/W2731899572, https://openalex.org/W4230611425, https://openalex.org/W2121524756, https://openalex.org/W4294635752, https://openalex.org/W4304166257, https://openalex.org/W782553550, https://openalex.org/W4383066092, https://openalex.org/W2795259429 |
| cited_by_count | 2 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 2 |
| locations_count | 4 |
| best_oa_location.id | doi:10.3390/nano14221812 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2764646681 |
| best_oa_location.source.issn | 2079-4991 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2079-4991 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Nanomaterials |
| best_oa_location.source.host_organization | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Nanomaterials |
| best_oa_location.landing_page_url | https://doi.org/10.3390/nano14221812 |
| primary_location.id | doi:10.3390/nano14221812 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2764646681 |
| primary_location.source.issn | 2079-4991 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2079-4991 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Nanomaterials |
| primary_location.source.host_organization | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Nanomaterials |
| primary_location.landing_page_url | https://doi.org/10.3390/nano14221812 |
| publication_date | 2024-11-12 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W3045894692, https://openalex.org/W3094613760, https://openalex.org/W2996732230, https://openalex.org/W3007004966, https://openalex.org/W4213064238, https://openalex.org/W4387933007, https://openalex.org/W1996064058, https://openalex.org/W2943354377, https://openalex.org/W2148354955, https://openalex.org/W4292230258, https://openalex.org/W4212835306, https://openalex.org/W3159854664, https://openalex.org/W4281845262, https://openalex.org/W3142003592, https://openalex.org/W4393257823, https://openalex.org/W3121109477, https://openalex.org/W3008967825, https://openalex.org/W3035920506, https://openalex.org/W2798701005, https://openalex.org/W2961079966, https://openalex.org/W4323805727, https://openalex.org/W2989670361, https://openalex.org/W3138209928, https://openalex.org/W3211176438, https://openalex.org/W2951647510, https://openalex.org/W2945750254, https://openalex.org/W2901187905, https://openalex.org/W2962761082, https://openalex.org/W3004020120, https://openalex.org/W4220784614, https://openalex.org/W3132805758, https://openalex.org/W2944657344, https://openalex.org/W2790915754, https://openalex.org/W4229073893, https://openalex.org/W4398781816, https://openalex.org/W4316505802, https://openalex.org/W4296918426, https://openalex.org/W3133382768, https://openalex.org/W2913693622, https://openalex.org/W2789178511, https://openalex.org/W1682373253, https://openalex.org/W4214679281, https://openalex.org/W4214659380, https://openalex.org/W3022237966, https://openalex.org/W2116138376, https://openalex.org/W2028045978, https://openalex.org/W1533861849, https://openalex.org/W4388180075, https://openalex.org/W1554181939, https://openalex.org/W3184400519, https://openalex.org/W4220776656, https://openalex.org/W4226061326, https://openalex.org/W3100539055, https://openalex.org/W3084220477 |
| referenced_works_count | 54 |
| abstract_inverted_index.a | 55, 64, 85, 89, 103, 110, 133, 209 |
| abstract_inverted_index.By | 80 |
| abstract_inverted_index.an | 159 |
| abstract_inverted_index.as | 69, 169, 171, 216 |
| abstract_inverted_index.at | 109 |
| abstract_inverted_index.by | 8, 33, 99, 173, 191 |
| abstract_inverted_index.is | 156, 188 |
| abstract_inverted_index.it | 41 |
| abstract_inverted_index.of | 4, 20, 48, 77, 84, 88, 107, 112, 120, 123, 127, 141, 147, 161, 180, 195, 201 |
| abstract_inverted_index.on | 63, 164, 225 |
| abstract_inverted_index.to | 16, 43, 153, 197 |
| abstract_inverted_index.we | 53 |
| abstract_inverted_index.0.9 | 108 |
| abstract_inverted_index.600 | 113 |
| abstract_inverted_index.90% | 163 |
| abstract_inverted_index.The | 0, 115, 144 |
| abstract_inverted_index.and | 22, 36, 101, 221 |
| abstract_inverted_index.are | 31 |
| abstract_inverted_index.can | 73, 93 |
| abstract_inverted_index.for | 212 |
| abstract_inverted_index.may | 207 |
| abstract_inverted_index.nm. | 114 |
| abstract_inverted_index.the | 18, 45, 75, 82, 91, 95, 139, 151, 165, 174, 178, 181, 193, 199, 202 |
| abstract_inverted_index.1024 | 130 |
| abstract_inverted_index.D2NN | 100 |
| abstract_inverted_index.This | 205 |
| abstract_inverted_index.also | 189 |
| abstract_inverted_index.deep | 57 |
| abstract_inverted_index.each | 126 |
| abstract_inverted_index.from | 150 |
| abstract_inverted_index.hard | 42 |
| abstract_inverted_index.high | 105 |
| abstract_inverted_index.meet | 44 |
| abstract_inverted_index.more | 182 |
| abstract_inverted_index.over | 162 |
| abstract_inverted_index.such | 215 |
| abstract_inverted_index.task | 146, 187 |
| abstract_inverted_index.test | 167 |
| abstract_inverted_index.well | 170 |
| abstract_inverted_index.with | 158 |
| abstract_inverted_index.Here, | 52 |
| abstract_inverted_index.based | 62, 224 |
| abstract_inverted_index.blind | 166 |
| abstract_inverted_index.fully | 134 |
| abstract_inverted_index.great | 14 |
| abstract_inverted_index.image | 117, 185, 219 |
| abstract_inverted_index.large | 34 |
| abstract_inverted_index.light | 50, 142 |
| abstract_inverted_index.phase | 96 |
| abstract_inverted_index.speed | 19 |
| abstract_inverted_index.study | 206 |
| abstract_inverted_index.three | 121 |
| abstract_inverted_index.which | 72, 128 |
| abstract_inverted_index.(D2NN) | 60 |
| abstract_inverted_index.animal | 184 |
| abstract_inverted_index.design | 3 |
| abstract_inverted_index.digits | 149 |
| abstract_inverted_index.hidden | 70 |
| abstract_inverted_index.layers | 122 |
| abstract_inverted_index.making | 40 |
| abstract_inverted_index.neural | 58, 136, 203 |
| abstract_inverted_index.number | 194 |
| abstract_inverted_index.offers | 13 |
| abstract_inverted_index.phased | 67 |
| abstract_inverted_index.radius | 83 |
| abstract_inverted_index.units, | 131 |
| abstract_inverted_index.vision | 223 |
| abstract_inverted_index.volume | 35 |
| abstract_inverted_index.complex | 183 |
| abstract_inverted_index.dataset | 155 |
| abstract_inverted_index.digits. | 79 |
| abstract_inverted_index.enhance | 198 |
| abstract_inverted_index.fields. | 143 |
| abstract_inverted_index.improve | 23 |
| abstract_inverted_index.inverse | 2 |
| abstract_inverted_index.layers, | 71 |
| abstract_inverted_index.machine | 222 |
| abstract_inverted_index.methods | 30 |
| abstract_inverted_index.network | 59, 137 |
| abstract_inverted_index.neurons | 196 |
| abstract_inverted_index.perform | 74 |
| abstract_inverted_index.profile | 97 |
| abstract_inverted_index.propose | 54 |
| abstract_inverted_index.provide | 208 |
| abstract_inverted_index.realize | 94 |
| abstract_inverted_index.silicon | 86 |
| abstract_inverted_index.through | 138 |
| abstract_inverted_index.‘0’ | 152 |
| abstract_inverted_index.‘5’ | 154 |
| abstract_inverted_index.However, | 26 |
| abstract_inverted_index.accuracy | 160 |
| abstract_inverted_index.consists | 119 |
| abstract_inverted_index.contains | 129 |
| abstract_inverted_index.dataset, | 168 |
| abstract_inverted_index.designed | 116 |
| abstract_inverted_index.flexible | 49 |
| abstract_inverted_index.hindered | 32 |
| abstract_inverted_index.maintain | 102 |
| abstract_inverted_index.nanodisk | 87 |
| abstract_inverted_index.network. | 204 |
| abstract_inverted_index.photonic | 5 |
| abstract_inverted_index.possible | 210 |
| abstract_inverted_index.process, | 39 |
| abstract_inverted_index.relative | 104 |
| abstract_inverted_index.solution | 211 |
| abstract_inverted_index.accuracy. | 25 |
| abstract_inverted_index.connected | 135 |
| abstract_inverted_index.difficult | 37 |
| abstract_inverted_index.framework | 61 |
| abstract_inverted_index.full-wave | 175 |
| abstract_inverted_index.mimicking | 132 |
| abstract_inverted_index.practical | 213 |
| abstract_inverted_index.tailoring | 81 |
| abstract_inverted_index.validated | 190 |
| abstract_inverted_index.verified, | 157 |
| abstract_inverted_index.accelerate | 17 |
| abstract_inverted_index.artificial | 10 |
| abstract_inverted_index.biomedical | 217 |
| abstract_inverted_index.calculated | 98 |
| abstract_inverted_index.classifier | 118 |
| abstract_inverted_index.computing, | 6 |
| abstract_inverted_index.computing. | 227 |
| abstract_inverted_index.detection, | 218 |
| abstract_inverted_index.especially | 7 |
| abstract_inverted_index.increasing | 192 |
| abstract_inverted_index.leveraging | 9 |
| abstract_inverted_index.meta-atom, | 90 |
| abstract_inverted_index.modulation | 29 |
| abstract_inverted_index.phase-only | 124 |
| abstract_inverted_index.wavelength | 111 |
| abstract_inverted_index.algorithms, | 12 |
| abstract_inverted_index.all-optical | 226 |
| abstract_inverted_index.calculation | 24 |
| abstract_inverted_index.convenience | 15 |
| abstract_inverted_index.data-driven | 46 |
| abstract_inverted_index.development | 21 |
| abstract_inverted_index.diffraction | 140 |
| abstract_inverted_index.diffractive | 56 |
| abstract_inverted_index.fabrication | 38 |
| abstract_inverted_index.handwriting | 148 |
| abstract_inverted_index.handwritten | 78 |
| abstract_inverted_index.metasurface | 92 |
| abstract_inverted_index.modulation. | 51 |
| abstract_inverted_index.performance | 179 |
| abstract_inverted_index.processing, | 220 |
| abstract_inverted_index.simulation. | 176 |
| abstract_inverted_index.three-layer | 65 |
| abstract_inverted_index.traditional | 27 |
| abstract_inverted_index.Furthermore, | 177 |
| abstract_inverted_index.applications | 214 |
| abstract_inverted_index.connectivity | 200 |
| abstract_inverted_index.demonstrated | 172 |
| abstract_inverted_index.intelligence | 11 |
| abstract_inverted_index.requirements | 47 |
| abstract_inverted_index.metasurfaces, | 125 |
| abstract_inverted_index.transmitarray | 68 |
| abstract_inverted_index.transmittance | 106 |
| abstract_inverted_index.all-dielectric | 66 |
| abstract_inverted_index.classification | 76, 145, 186 |
| abstract_inverted_index.thickness-based | 28 |
| abstract_inverted_index.computer-assisted | 1 |
| cited_by_percentile_year.max | 97 |
| cited_by_percentile_year.min | 95 |
| corresponding_author_ids | https://openalex.org/A5066532604, https://openalex.org/A5100608946 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 7 |
| corresponding_institution_ids | https://openalex.org/I17145004, https://openalex.org/I2799850029, https://openalex.org/I890469752 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/9 |
| sustainable_development_goals[0].score | 0.44999998807907104 |
| sustainable_development_goals[0].display_name | Industry, innovation and infrastructure |
| citation_normalized_percentile.value | 0.81066145 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |