Method comparison of Naïve Bayes, Logistic Regression, and SVM for Analyzing Movie Reviews Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.47065/bits.v4i4.2644
A film can be categorized as a successful film based on the reviews given by the critics. The reviews can range from professional critics to public reviews from the general audience. Due to a large number of reviews and opinions on a film, this study aims to create a sentiment analysis model and compare the methods used to analyze datasets from a movie review. Sentiment Analysis is a method for studying and analyzing opinions, then classifying these opinions into several classes. This research will use the Naïve Bayes method, Logistic Regression, and Support Vector Machine (SVM) to analyze film review data. The film review dataset used is a collection of film reviews taken from the Rotten Tomatoes website and will be pre-processed before implementing the Naïve Bayes, Logistic Regression, and SVM methods. The SVM classifier with 80:20 data splitting has the best performance, with a result of 99.4% accuracy score and 93.5% F1 score.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.47065/bits.v4i4.2644
- https://ejurnal.seminar-id.com/index.php/bits/article/download/2644/1876
- OA Status
- diamond
- Cited By
- 6
- References
- 21
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4366586162
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4366586162Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.47065/bits.v4i4.2644Digital Object Identifier
- Title
-
Method comparison of Naïve Bayes, Logistic Regression, and SVM for Analyzing Movie ReviewsWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-03-29Full publication date if available
- Authors
-
Muhammad Maulidan Aziz, Mahendra Dwifebri Purbalaksono, Adiwijaya AdiwijayaList of authors in order
- Landing page
-
https://doi.org/10.47065/bits.v4i4.2644Publisher landing page
- PDF URL
-
https://ejurnal.seminar-id.com/index.php/bits/article/download/2644/1876Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://ejurnal.seminar-id.com/index.php/bits/article/download/2644/1876Direct OA link when available
- Concepts
-
Support vector machine, Logistic regression, Naive Bayes classifier, Artificial intelligence, Machine learning, Computer science, Bayes' theorem, Classifier (UML), Data mining, Bayesian probabilityTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
6Total citation count in OpenAlex
- Citations by year (recent)
-
2024: 6Per-year citation counts (last 5 years)
- References (count)
-
21Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4366586162 |
|---|---|
| doi | https://doi.org/10.47065/bits.v4i4.2644 |
| ids.doi | https://doi.org/10.47065/bits.v4i4.2644 |
| ids.openalex | https://openalex.org/W4366586162 |
| fwci | 3.71092576 |
| type | article |
| title | Method comparison of Naïve Bayes, Logistic Regression, and SVM for Analyzing Movie Reviews |
| biblio.issue | 4 |
| biblio.volume | 4 |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T14216 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9843000173568726 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1710 |
| topics[0].subfield.display_name | Information Systems |
| topics[0].display_name | Multimedia Learning Systems |
| topics[1].id | https://openalex.org/T13373 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9693999886512756 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1710 |
| topics[1].subfield.display_name | Information Systems |
| topics[1].display_name | Data Mining and Machine Learning Applications |
| topics[2].id | https://openalex.org/T10664 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9276000261306763 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Sentiment Analysis and Opinion Mining |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C12267149 |
| concepts[0].level | 2 |
| concepts[0].score | 0.870657742023468 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q282453 |
| concepts[0].display_name | Support vector machine |
| concepts[1].id | https://openalex.org/C151956035 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7702023983001709 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1132755 |
| concepts[1].display_name | Logistic regression |
| concepts[2].id | https://openalex.org/C52001869 |
| concepts[2].level | 3 |
| concepts[2].score | 0.7645019292831421 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q812530 |
| concepts[2].display_name | Naive Bayes classifier |
| concepts[3].id | https://openalex.org/C154945302 |
| concepts[3].level | 1 |
| concepts[3].score | 0.6036194562911987 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[3].display_name | Artificial intelligence |
| concepts[4].id | https://openalex.org/C119857082 |
| concepts[4].level | 1 |
| concepts[4].score | 0.5555070638656616 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[4].display_name | Machine learning |
| concepts[5].id | https://openalex.org/C41008148 |
| concepts[5].level | 0 |
| concepts[5].score | 0.5552148222923279 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[5].display_name | Computer science |
| concepts[6].id | https://openalex.org/C207201462 |
| concepts[6].level | 3 |
| concepts[6].score | 0.4892287254333496 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q182505 |
| concepts[6].display_name | Bayes' theorem |
| concepts[7].id | https://openalex.org/C95623464 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4611937999725342 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q1096149 |
| concepts[7].display_name | Classifier (UML) |
| concepts[8].id | https://openalex.org/C124101348 |
| concepts[8].level | 1 |
| concepts[8].score | 0.35269802808761597 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[8].display_name | Data mining |
| concepts[9].id | https://openalex.org/C107673813 |
| concepts[9].level | 2 |
| concepts[9].score | 0.15225517749786377 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q812534 |
| concepts[9].display_name | Bayesian probability |
| keywords[0].id | https://openalex.org/keywords/support-vector-machine |
| keywords[0].score | 0.870657742023468 |
| keywords[0].display_name | Support vector machine |
| keywords[1].id | https://openalex.org/keywords/logistic-regression |
| keywords[1].score | 0.7702023983001709 |
| keywords[1].display_name | Logistic regression |
| keywords[2].id | https://openalex.org/keywords/naive-bayes-classifier |
| keywords[2].score | 0.7645019292831421 |
| keywords[2].display_name | Naive Bayes classifier |
| keywords[3].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[3].score | 0.6036194562911987 |
| keywords[3].display_name | Artificial intelligence |
| keywords[4].id | https://openalex.org/keywords/machine-learning |
| keywords[4].score | 0.5555070638656616 |
| keywords[4].display_name | Machine learning |
| keywords[5].id | https://openalex.org/keywords/computer-science |
| keywords[5].score | 0.5552148222923279 |
| keywords[5].display_name | Computer science |
| keywords[6].id | https://openalex.org/keywords/bayes-theorem |
| keywords[6].score | 0.4892287254333496 |
| keywords[6].display_name | Bayes' theorem |
| keywords[7].id | https://openalex.org/keywords/classifier |
| keywords[7].score | 0.4611937999725342 |
| keywords[7].display_name | Classifier (UML) |
| keywords[8].id | https://openalex.org/keywords/data-mining |
| keywords[8].score | 0.35269802808761597 |
| keywords[8].display_name | Data mining |
| keywords[9].id | https://openalex.org/keywords/bayesian-probability |
| keywords[9].score | 0.15225517749786377 |
| keywords[9].display_name | Bayesian probability |
| language | en |
| locations[0].id | doi:10.47065/bits.v4i4.2644 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210226296 |
| locations[0].source.issn | 2684-8910, 2685-3310 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2684-8910 |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Building of Informatics Technology and Science (BITS) |
| locations[0].source.host_organization | |
| locations[0].source.host_organization_name | |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://ejurnal.seminar-id.com/index.php/bits/article/download/2644/1876 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Building of Informatics, Technology and Science (BITS) |
| locations[0].landing_page_url | https://doi.org/10.47065/bits.v4i4.2644 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5090937388 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Muhammad Maulidan Aziz |
| authorships[0].countries | ID |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I862893732 |
| authorships[0].affiliations[0].raw_affiliation_string | Telkom University, Bandung |
| authorships[0].institutions[0].id | https://openalex.org/I862893732 |
| authorships[0].institutions[0].ror | https://ror.org/0004wsx81 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I862893732 |
| authorships[0].institutions[0].country_code | ID |
| authorships[0].institutions[0].display_name | Telkom University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Muhammad Maulidan Aziz |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | Telkom University, Bandung |
| authorships[1].author.id | https://openalex.org/A5040147499 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Mahendra Dwifebri Purbalaksono |
| authorships[1].countries | ID |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I862893732 |
| authorships[1].affiliations[0].raw_affiliation_string | Telkom University, Bandung |
| authorships[1].institutions[0].id | https://openalex.org/I862893732 |
| authorships[1].institutions[0].ror | https://ror.org/0004wsx81 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I862893732 |
| authorships[1].institutions[0].country_code | ID |
| authorships[1].institutions[0].display_name | Telkom University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Mahendra Dwifebri Purbalaksono |
| authorships[1].is_corresponding | True |
| authorships[1].raw_affiliation_strings | Telkom University, Bandung |
| authorships[2].author.id | https://openalex.org/A5061473902 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-3518-7587 |
| authorships[2].author.display_name | Adiwijaya Adiwijaya |
| authorships[2].countries | ID |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I862893732 |
| authorships[2].affiliations[0].raw_affiliation_string | Telkom University, Bandung |
| authorships[2].institutions[0].id | https://openalex.org/I862893732 |
| authorships[2].institutions[0].ror | https://ror.org/0004wsx81 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I862893732 |
| authorships[2].institutions[0].country_code | ID |
| authorships[2].institutions[0].display_name | Telkom University |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Adiwijaya Adiwijaya |
| authorships[2].is_corresponding | True |
| authorships[2].raw_affiliation_strings | Telkom University, Bandung |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://ejurnal.seminar-id.com/index.php/bits/article/download/2644/1876 |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Method comparison of Naïve Bayes, Logistic Regression, and SVM for Analyzing Movie Reviews |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T14216 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9843000173568726 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1710 |
| primary_topic.subfield.display_name | Information Systems |
| primary_topic.display_name | Multimedia Learning Systems |
| related_works | https://openalex.org/W4205958290, https://openalex.org/W2595988085, https://openalex.org/W2979979539, https://openalex.org/W4327772909, https://openalex.org/W4214820172, https://openalex.org/W3212956230, https://openalex.org/W2539163683, https://openalex.org/W4364301914, https://openalex.org/W4281846282, https://openalex.org/W4225312515 |
| cited_by_count | 6 |
| counts_by_year[0].year | 2024 |
| counts_by_year[0].cited_by_count | 6 |
| locations_count | 1 |
| best_oa_location.id | doi:10.47065/bits.v4i4.2644 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210226296 |
| best_oa_location.source.issn | 2684-8910, 2685-3310 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2684-8910 |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Building of Informatics Technology and Science (BITS) |
| best_oa_location.source.host_organization | |
| best_oa_location.source.host_organization_name | |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://ejurnal.seminar-id.com/index.php/bits/article/download/2644/1876 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Building of Informatics, Technology and Science (BITS) |
| best_oa_location.landing_page_url | https://doi.org/10.47065/bits.v4i4.2644 |
| primary_location.id | doi:10.47065/bits.v4i4.2644 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210226296 |
| primary_location.source.issn | 2684-8910, 2685-3310 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2684-8910 |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Building of Informatics Technology and Science (BITS) |
| primary_location.source.host_organization | |
| primary_location.source.host_organization_name | |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://ejurnal.seminar-id.com/index.php/bits/article/download/2644/1876 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Building of Informatics, Technology and Science (BITS) |
| primary_location.landing_page_url | https://doi.org/10.47065/bits.v4i4.2644 |
| publication_date | 2023-03-29 |
| publication_year | 2023 |
| referenced_works | https://openalex.org/W3002519755, https://openalex.org/W2964236337, https://openalex.org/W2148034183, https://openalex.org/W3036246613, https://openalex.org/W2944670321, https://openalex.org/W3005305696, https://openalex.org/W3004167304, https://openalex.org/W3160464195, https://openalex.org/W2883730939, https://openalex.org/W4320070634, https://openalex.org/W4214671169, https://openalex.org/W2909729347, https://openalex.org/W3023211159, https://openalex.org/W2901396884, https://openalex.org/W2945503157, https://openalex.org/W2069539533, https://openalex.org/W6631834165, https://openalex.org/W2794916302, https://openalex.org/W3091060481, https://openalex.org/W1532325895, https://openalex.org/W3105656778 |
| referenced_works_count | 21 |
| abstract_inverted_index.A | 0 |
| abstract_inverted_index.a | 6, 33, 41, 48, 61, 67, 107, 144 |
| abstract_inverted_index.F1 | 152 |
| abstract_inverted_index.as | 5 |
| abstract_inverted_index.be | 3, 120 |
| abstract_inverted_index.by | 14 |
| abstract_inverted_index.is | 66, 106 |
| abstract_inverted_index.of | 36, 109, 146 |
| abstract_inverted_index.on | 10, 40 |
| abstract_inverted_index.to | 24, 32, 46, 57, 96 |
| abstract_inverted_index.Due | 31 |
| abstract_inverted_index.SVM | 130, 133 |
| abstract_inverted_index.The | 17, 101, 132 |
| abstract_inverted_index.and | 38, 52, 71, 91, 118, 129, 150 |
| abstract_inverted_index.can | 2, 19 |
| abstract_inverted_index.for | 69 |
| abstract_inverted_index.has | 139 |
| abstract_inverted_index.the | 11, 15, 28, 54, 85, 114, 124, 140 |
| abstract_inverted_index.use | 84 |
| abstract_inverted_index.This | 81 |
| abstract_inverted_index.aims | 45 |
| abstract_inverted_index.best | 141 |
| abstract_inverted_index.data | 137 |
| abstract_inverted_index.film | 1, 8, 98, 102, 110 |
| abstract_inverted_index.from | 21, 27, 60, 113 |
| abstract_inverted_index.into | 78 |
| abstract_inverted_index.then | 74 |
| abstract_inverted_index.this | 43 |
| abstract_inverted_index.used | 56, 105 |
| abstract_inverted_index.will | 83, 119 |
| abstract_inverted_index.with | 135, 143 |
| abstract_inverted_index.(SVM) | 95 |
| abstract_inverted_index.80:20 | 136 |
| abstract_inverted_index.93.5% | 151 |
| abstract_inverted_index.99.4% | 147 |
| abstract_inverted_index.Bayes | 87 |
| abstract_inverted_index.based | 9 |
| abstract_inverted_index.data. | 100 |
| abstract_inverted_index.film, | 42 |
| abstract_inverted_index.given | 13 |
| abstract_inverted_index.large | 34 |
| abstract_inverted_index.model | 51 |
| abstract_inverted_index.movie | 62 |
| abstract_inverted_index.range | 20 |
| abstract_inverted_index.score | 149 |
| abstract_inverted_index.study | 44 |
| abstract_inverted_index.taken | 112 |
| abstract_inverted_index.these | 76 |
| abstract_inverted_index.Bayes, | 126 |
| abstract_inverted_index.Naïve | 86, 125 |
| abstract_inverted_index.Rotten | 115 |
| abstract_inverted_index.Vector | 93 |
| abstract_inverted_index.before | 122 |
| abstract_inverted_index.create | 47 |
| abstract_inverted_index.method | 68 |
| abstract_inverted_index.number | 35 |
| abstract_inverted_index.public | 25 |
| abstract_inverted_index.result | 145 |
| abstract_inverted_index.review | 99, 103 |
| abstract_inverted_index.score. | 153 |
| abstract_inverted_index.Machine | 94 |
| abstract_inverted_index.Support | 92 |
| abstract_inverted_index.analyze | 58, 97 |
| abstract_inverted_index.compare | 53 |
| abstract_inverted_index.critics | 23 |
| abstract_inverted_index.dataset | 104 |
| abstract_inverted_index.general | 29 |
| abstract_inverted_index.method, | 88 |
| abstract_inverted_index.methods | 55 |
| abstract_inverted_index.review. | 63 |
| abstract_inverted_index.reviews | 12, 18, 26, 37, 111 |
| abstract_inverted_index.several | 79 |
| abstract_inverted_index.website | 117 |
| abstract_inverted_index.Analysis | 65 |
| abstract_inverted_index.Logistic | 89, 127 |
| abstract_inverted_index.Tomatoes | 116 |
| abstract_inverted_index.accuracy | 148 |
| abstract_inverted_index.analysis | 50 |
| abstract_inverted_index.classes. | 80 |
| abstract_inverted_index.critics. | 16 |
| abstract_inverted_index.datasets | 59 |
| abstract_inverted_index.methods. | 131 |
| abstract_inverted_index.opinions | 39, 77 |
| abstract_inverted_index.research | 82 |
| abstract_inverted_index.studying | 70 |
| abstract_inverted_index.Sentiment | 64 |
| abstract_inverted_index.analyzing | 72 |
| abstract_inverted_index.audience. | 30 |
| abstract_inverted_index.opinions, | 73 |
| abstract_inverted_index.sentiment | 49 |
| abstract_inverted_index.splitting | 138 |
| abstract_inverted_index.classifier | 134 |
| abstract_inverted_index.collection | 108 |
| abstract_inverted_index.successful | 7 |
| abstract_inverted_index.Regression, | 90, 128 |
| abstract_inverted_index.categorized | 4 |
| abstract_inverted_index.classifying | 75 |
| abstract_inverted_index.implementing | 123 |
| abstract_inverted_index.performance, | 142 |
| abstract_inverted_index.professional | 22 |
| abstract_inverted_index.pre-processed | 121 |
| cited_by_percentile_year.max | 98 |
| cited_by_percentile_year.min | 97 |
| corresponding_author_ids | https://openalex.org/A5040147499, https://openalex.org/A5061473902, https://openalex.org/A5090937388 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 3 |
| corresponding_institution_ids | https://openalex.org/I862893732 |
| citation_normalized_percentile.value | 0.92215279 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |