MetricBERT: Text Representation Learning via Self-Supervised Triplet Training Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2208.06610
We present MetricBERT, a BERT-based model that learns to embed text under a well-defined similarity metric while simultaneously adhering to the ``traditional'' masked-language task. We focus on downstream tasks of learning similarities for recommendations where we show that MetricBERT outperforms state-of-the-art alternatives, sometimes by a substantial margin. We conduct extensive evaluations of our method and its different variants, showing that our training objective is highly beneficial over a traditional contrastive loss, a standard cosine similarity objective, and six other baselines. As an additional contribution, we publish a dataset of video games descriptions along with a test set of similarity annotations crafted by a domain expert.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2208.06610
- https://arxiv.org/pdf/2208.06610
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4292107359
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4292107359Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2208.06610Digital Object Identifier
- Title
-
MetricBERT: Text Representation Learning via Self-Supervised Triplet TrainingWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-08-13Full publication date if available
- Authors
-
Itzik Malkiel, Dvir Ginzburg, Oren Barkan, Avi Caciularu, Yoni Weill, Noam KoenigsteinList of authors in order
- Landing page
-
https://arxiv.org/abs/2208.06610Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2208.06610Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2208.06610Direct OA link when available
- Concepts
-
Computer science, Similarity (geometry), Margin (machine learning), Cosine similarity, Artificial intelligence, Natural language processing, Metric (unit), Representation (politics), Set (abstract data type), Focus (optics), Task (project management), Test set, Domain (mathematical analysis), Machine learning, Training set, Information retrieval, Pattern recognition (psychology), Image (mathematics), Mathematics, Political science, Economics, Mathematical analysis, Optics, Physics, Politics, Management, Operations management, Law, Programming languageTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4292107359 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2208.06610 |
| ids.doi | https://doi.org/10.48550/arxiv.2208.06610 |
| ids.openalex | https://openalex.org/W4292107359 |
| fwci | |
| type | preprint |
| title | MetricBERT: Text Representation Learning via Self-Supervised Triplet Training |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10028 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9959999918937683 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Topic Modeling |
| topics[1].id | https://openalex.org/T10181 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9901999831199646 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Natural Language Processing Techniques |
| topics[2].id | https://openalex.org/T11714 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9821000099182129 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1707 |
| topics[2].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[2].display_name | Multimodal Machine Learning Applications |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.7631231546401978 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C103278499 |
| concepts[1].level | 3 |
| concepts[1].score | 0.7327399253845215 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q254465 |
| concepts[1].display_name | Similarity (geometry) |
| concepts[2].id | https://openalex.org/C774472 |
| concepts[2].level | 2 |
| concepts[2].score | 0.7105088233947754 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q6760393 |
| concepts[2].display_name | Margin (machine learning) |
| concepts[3].id | https://openalex.org/C2780762811 |
| concepts[3].level | 3 |
| concepts[3].score | 0.6905397176742554 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q1784941 |
| concepts[3].display_name | Cosine similarity |
| concepts[4].id | https://openalex.org/C154945302 |
| concepts[4].level | 1 |
| concepts[4].score | 0.6473278403282166 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[4].display_name | Artificial intelligence |
| concepts[5].id | https://openalex.org/C204321447 |
| concepts[5].level | 1 |
| concepts[5].score | 0.630184531211853 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q30642 |
| concepts[5].display_name | Natural language processing |
| concepts[6].id | https://openalex.org/C176217482 |
| concepts[6].level | 2 |
| concepts[6].score | 0.6079245805740356 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q860554 |
| concepts[6].display_name | Metric (unit) |
| concepts[7].id | https://openalex.org/C2776359362 |
| concepts[7].level | 3 |
| concepts[7].score | 0.5788285732269287 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q2145286 |
| concepts[7].display_name | Representation (politics) |
| concepts[8].id | https://openalex.org/C177264268 |
| concepts[8].level | 2 |
| concepts[8].score | 0.5642614364624023 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q1514741 |
| concepts[8].display_name | Set (abstract data type) |
| concepts[9].id | https://openalex.org/C192209626 |
| concepts[9].level | 2 |
| concepts[9].score | 0.5479863882064819 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q190909 |
| concepts[9].display_name | Focus (optics) |
| concepts[10].id | https://openalex.org/C2780451532 |
| concepts[10].level | 2 |
| concepts[10].score | 0.5476109981536865 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q759676 |
| concepts[10].display_name | Task (project management) |
| concepts[11].id | https://openalex.org/C169903167 |
| concepts[11].level | 2 |
| concepts[11].score | 0.4947630763053894 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q3985153 |
| concepts[11].display_name | Test set |
| concepts[12].id | https://openalex.org/C36503486 |
| concepts[12].level | 2 |
| concepts[12].score | 0.47932398319244385 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q11235244 |
| concepts[12].display_name | Domain (mathematical analysis) |
| concepts[13].id | https://openalex.org/C119857082 |
| concepts[13].level | 1 |
| concepts[13].score | 0.4466184675693512 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[13].display_name | Machine learning |
| concepts[14].id | https://openalex.org/C51632099 |
| concepts[14].level | 2 |
| concepts[14].score | 0.427035927772522 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q3985153 |
| concepts[14].display_name | Training set |
| concepts[15].id | https://openalex.org/C23123220 |
| concepts[15].level | 1 |
| concepts[15].score | 0.34925806522369385 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q816826 |
| concepts[15].display_name | Information retrieval |
| concepts[16].id | https://openalex.org/C153180895 |
| concepts[16].level | 2 |
| concepts[16].score | 0.20389723777770996 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[16].display_name | Pattern recognition (psychology) |
| concepts[17].id | https://openalex.org/C115961682 |
| concepts[17].level | 2 |
| concepts[17].score | 0.12140011787414551 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q860623 |
| concepts[17].display_name | Image (mathematics) |
| concepts[18].id | https://openalex.org/C33923547 |
| concepts[18].level | 0 |
| concepts[18].score | 0.07521748542785645 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[18].display_name | Mathematics |
| concepts[19].id | https://openalex.org/C17744445 |
| concepts[19].level | 0 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q36442 |
| concepts[19].display_name | Political science |
| concepts[20].id | https://openalex.org/C162324750 |
| concepts[20].level | 0 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q8134 |
| concepts[20].display_name | Economics |
| concepts[21].id | https://openalex.org/C134306372 |
| concepts[21].level | 1 |
| concepts[21].score | 0.0 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q7754 |
| concepts[21].display_name | Mathematical analysis |
| concepts[22].id | https://openalex.org/C120665830 |
| concepts[22].level | 1 |
| concepts[22].score | 0.0 |
| concepts[22].wikidata | https://www.wikidata.org/wiki/Q14620 |
| concepts[22].display_name | Optics |
| concepts[23].id | https://openalex.org/C121332964 |
| concepts[23].level | 0 |
| concepts[23].score | 0.0 |
| concepts[23].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[23].display_name | Physics |
| concepts[24].id | https://openalex.org/C94625758 |
| concepts[24].level | 2 |
| concepts[24].score | 0.0 |
| concepts[24].wikidata | https://www.wikidata.org/wiki/Q7163 |
| concepts[24].display_name | Politics |
| concepts[25].id | https://openalex.org/C187736073 |
| concepts[25].level | 1 |
| concepts[25].score | 0.0 |
| concepts[25].wikidata | https://www.wikidata.org/wiki/Q2920921 |
| concepts[25].display_name | Management |
| concepts[26].id | https://openalex.org/C21547014 |
| concepts[26].level | 1 |
| concepts[26].score | 0.0 |
| concepts[26].wikidata | https://www.wikidata.org/wiki/Q1423657 |
| concepts[26].display_name | Operations management |
| concepts[27].id | https://openalex.org/C199539241 |
| concepts[27].level | 1 |
| concepts[27].score | 0.0 |
| concepts[27].wikidata | https://www.wikidata.org/wiki/Q7748 |
| concepts[27].display_name | Law |
| concepts[28].id | https://openalex.org/C199360897 |
| concepts[28].level | 1 |
| concepts[28].score | 0.0 |
| concepts[28].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[28].display_name | Programming language |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.7631231546401978 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/similarity |
| keywords[1].score | 0.7327399253845215 |
| keywords[1].display_name | Similarity (geometry) |
| keywords[2].id | https://openalex.org/keywords/margin |
| keywords[2].score | 0.7105088233947754 |
| keywords[2].display_name | Margin (machine learning) |
| keywords[3].id | https://openalex.org/keywords/cosine-similarity |
| keywords[3].score | 0.6905397176742554 |
| keywords[3].display_name | Cosine similarity |
| keywords[4].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[4].score | 0.6473278403282166 |
| keywords[4].display_name | Artificial intelligence |
| keywords[5].id | https://openalex.org/keywords/natural-language-processing |
| keywords[5].score | 0.630184531211853 |
| keywords[5].display_name | Natural language processing |
| keywords[6].id | https://openalex.org/keywords/metric |
| keywords[6].score | 0.6079245805740356 |
| keywords[6].display_name | Metric (unit) |
| keywords[7].id | https://openalex.org/keywords/representation |
| keywords[7].score | 0.5788285732269287 |
| keywords[7].display_name | Representation (politics) |
| keywords[8].id | https://openalex.org/keywords/set |
| keywords[8].score | 0.5642614364624023 |
| keywords[8].display_name | Set (abstract data type) |
| keywords[9].id | https://openalex.org/keywords/focus |
| keywords[9].score | 0.5479863882064819 |
| keywords[9].display_name | Focus (optics) |
| keywords[10].id | https://openalex.org/keywords/task |
| keywords[10].score | 0.5476109981536865 |
| keywords[10].display_name | Task (project management) |
| keywords[11].id | https://openalex.org/keywords/test-set |
| keywords[11].score | 0.4947630763053894 |
| keywords[11].display_name | Test set |
| keywords[12].id | https://openalex.org/keywords/domain |
| keywords[12].score | 0.47932398319244385 |
| keywords[12].display_name | Domain (mathematical analysis) |
| keywords[13].id | https://openalex.org/keywords/machine-learning |
| keywords[13].score | 0.4466184675693512 |
| keywords[13].display_name | Machine learning |
| keywords[14].id | https://openalex.org/keywords/training-set |
| keywords[14].score | 0.427035927772522 |
| keywords[14].display_name | Training set |
| keywords[15].id | https://openalex.org/keywords/information-retrieval |
| keywords[15].score | 0.34925806522369385 |
| keywords[15].display_name | Information retrieval |
| keywords[16].id | https://openalex.org/keywords/pattern-recognition |
| keywords[16].score | 0.20389723777770996 |
| keywords[16].display_name | Pattern recognition (psychology) |
| keywords[17].id | https://openalex.org/keywords/image |
| keywords[17].score | 0.12140011787414551 |
| keywords[17].display_name | Image (mathematics) |
| keywords[18].id | https://openalex.org/keywords/mathematics |
| keywords[18].score | 0.07521748542785645 |
| keywords[18].display_name | Mathematics |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2208.06610 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2208.06610 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2208.06610 |
| locations[1].id | doi:10.48550/arxiv.2208.06610 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2208.06610 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5067773841 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-4151-9119 |
| authorships[0].author.display_name | Itzik Malkiel |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Malkiel, Itzik |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5102868612 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-3410-8453 |
| authorships[1].author.display_name | Dvir Ginzburg |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Ginzburg, Dvir |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5077269072 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-5059-0905 |
| authorships[2].author.display_name | Oren Barkan |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Barkan, Oren |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5077903013 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-0573-1075 |
| authorships[3].author.display_name | Avi Caciularu |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Caciularu, Avi |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5030695987 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Yoni Weill |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Weill, Yoni |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5083002103 |
| authorships[5].author.orcid | https://orcid.org/0000-0001-8219-4512 |
| authorships[5].author.display_name | Noam Koenigstein |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Koenigstein, Noam |
| authorships[5].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2208.06610 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | MetricBERT: Text Representation Learning via Self-Supervised Triplet Training |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10028 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9959999918937683 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Topic Modeling |
| related_works | https://openalex.org/W2997457842, https://openalex.org/W1997431798, https://openalex.org/W3094960827, https://openalex.org/W1999699871, https://openalex.org/W4225124612, https://openalex.org/W2043806667, https://openalex.org/W2021633306, https://openalex.org/W2006801911, https://openalex.org/W2033669961, https://openalex.org/W2971899271 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2208.06610 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2208.06610 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2208.06610 |
| primary_location.id | pmh:oai:arXiv.org:2208.06610 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2208.06610 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2208.06610 |
| publication_date | 2022-08-13 |
| publication_year | 2022 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 3, 12, 44, 67, 71, 86, 94, 102 |
| abstract_inverted_index.As | 80 |
| abstract_inverted_index.We | 0, 24, 47 |
| abstract_inverted_index.an | 81 |
| abstract_inverted_index.by | 43, 101 |
| abstract_inverted_index.is | 63 |
| abstract_inverted_index.of | 29, 51, 88, 97 |
| abstract_inverted_index.on | 26 |
| abstract_inverted_index.to | 8, 19 |
| abstract_inverted_index.we | 35, 84 |
| abstract_inverted_index.and | 54, 76 |
| abstract_inverted_index.for | 32 |
| abstract_inverted_index.its | 55 |
| abstract_inverted_index.our | 52, 60 |
| abstract_inverted_index.set | 96 |
| abstract_inverted_index.six | 77 |
| abstract_inverted_index.the | 20 |
| abstract_inverted_index.over | 66 |
| abstract_inverted_index.show | 36 |
| abstract_inverted_index.test | 95 |
| abstract_inverted_index.text | 10 |
| abstract_inverted_index.that | 6, 37, 59 |
| abstract_inverted_index.with | 93 |
| abstract_inverted_index.along | 92 |
| abstract_inverted_index.embed | 9 |
| abstract_inverted_index.focus | 25 |
| abstract_inverted_index.games | 90 |
| abstract_inverted_index.loss, | 70 |
| abstract_inverted_index.model | 5 |
| abstract_inverted_index.other | 78 |
| abstract_inverted_index.task. | 23 |
| abstract_inverted_index.tasks | 28 |
| abstract_inverted_index.under | 11 |
| abstract_inverted_index.video | 89 |
| abstract_inverted_index.where | 34 |
| abstract_inverted_index.while | 16 |
| abstract_inverted_index.cosine | 73 |
| abstract_inverted_index.domain | 103 |
| abstract_inverted_index.highly | 64 |
| abstract_inverted_index.learns | 7 |
| abstract_inverted_index.method | 53 |
| abstract_inverted_index.metric | 15 |
| abstract_inverted_index.conduct | 48 |
| abstract_inverted_index.crafted | 100 |
| abstract_inverted_index.dataset | 87 |
| abstract_inverted_index.expert. | 104 |
| abstract_inverted_index.margin. | 46 |
| abstract_inverted_index.present | 1 |
| abstract_inverted_index.publish | 85 |
| abstract_inverted_index.showing | 58 |
| abstract_inverted_index.adhering | 18 |
| abstract_inverted_index.learning | 30 |
| abstract_inverted_index.standard | 72 |
| abstract_inverted_index.training | 61 |
| abstract_inverted_index.different | 56 |
| abstract_inverted_index.extensive | 49 |
| abstract_inverted_index.objective | 62 |
| abstract_inverted_index.sometimes | 42 |
| abstract_inverted_index.variants, | 57 |
| abstract_inverted_index.BERT-based | 4 |
| abstract_inverted_index.MetricBERT | 38 |
| abstract_inverted_index.additional | 82 |
| abstract_inverted_index.baselines. | 79 |
| abstract_inverted_index.beneficial | 65 |
| abstract_inverted_index.downstream | 27 |
| abstract_inverted_index.objective, | 75 |
| abstract_inverted_index.similarity | 14, 74, 98 |
| abstract_inverted_index.MetricBERT, | 2 |
| abstract_inverted_index.annotations | 99 |
| abstract_inverted_index.contrastive | 69 |
| abstract_inverted_index.evaluations | 50 |
| abstract_inverted_index.outperforms | 39 |
| abstract_inverted_index.substantial | 45 |
| abstract_inverted_index.traditional | 68 |
| abstract_inverted_index.descriptions | 91 |
| abstract_inverted_index.similarities | 31 |
| abstract_inverted_index.well-defined | 13 |
| abstract_inverted_index.alternatives, | 41 |
| abstract_inverted_index.contribution, | 83 |
| abstract_inverted_index.simultaneously | 17 |
| abstract_inverted_index.``traditional'' | 21 |
| abstract_inverted_index.masked-language | 22 |
| abstract_inverted_index.recommendations | 33 |
| abstract_inverted_index.state-of-the-art | 40 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 6 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/4 |
| sustainable_development_goals[0].score | 0.5199999809265137 |
| sustainable_development_goals[0].display_name | Quality Education |
| citation_normalized_percentile |