MF-YOLO: Mask Wearing Detection Algorithm for Dense Environments Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1109/access.2025.3551892
To address the challenges of false positives and missed detections in face mask detection within dense environments, we propose the MF-YOLO face mask detection model. First, a feature map convolution approach is introduced to transform the feature map information into the initial weights of convolutional kernels, accelerating the convergence of model training. Additionally, a residual self-attention module is designed to capture fine edge position features by combining global feature extraction with sliding window-based information interaction, effectively reducing missed detections, especially for small objects. Furthermore, we introduce a mixed attention mechanism that integrates both channel and spatial attention, enabling the model to focus more effectively on key features and better target the objects of interest. Finally, an enhanced feature-fusion strategy is employed to mitigate the loss of feature information during layer-by-layer transmission, improving the model’s ability to fuse information at the same scale. Experimental results in the public MASK dataset and the self-built SFMD dataset demonstrate that the proposed algorithm significantly accelerates convergence while improving accuracy by 2.1% and 1.3%, respectively, compared to the original network. Our code and datasets are publicly released on GitHub https://github.com/wenpengshishuaige/MF-YOLO.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1109/access.2025.3551892
- OA Status
- gold
- References
- 46
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4408520140
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4408520140Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1109/access.2025.3551892Digital Object Identifier
- Title
-
MF-YOLO: Mask Wearing Detection Algorithm for Dense EnvironmentsWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-01-01Full publication date if available
- Authors
-
Peng Wen, Zhengyi Yuan, Junhu Zhang, Haitao LiList of authors in order
- Landing page
-
https://doi.org/10.1109/access.2025.3551892Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1109/access.2025.3551892Direct OA link when available
- Concepts
-
Computer science, Algorithm, Computer visionTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
46Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4408520140 |
|---|---|
| doi | https://doi.org/10.1109/access.2025.3551892 |
| ids.doi | https://doi.org/10.1109/access.2025.3551892 |
| ids.openalex | https://openalex.org/W4408520140 |
| fwci | 0.0 |
| type | article |
| title | MF-YOLO: Mask Wearing Detection Algorithm for Dense Environments |
| awards[0].id | https://openalex.org/G4280680737 |
| awards[0].funder_id | https://openalex.org/F4320321001 |
| awards[0].display_name | |
| awards[0].funder_award_id | 62201314 |
| awards[0].funder_display_name | National Natural Science Foundation of China |
| awards[1].id | https://openalex.org/G7273554519 |
| awards[1].funder_id | https://openalex.org/F4320321001 |
| awards[1].display_name | |
| awards[1].funder_award_id | 61806107 |
| awards[1].funder_display_name | National Natural Science Foundation of China |
| awards[2].id | https://openalex.org/G2919925446 |
| awards[2].funder_id | https://openalex.org/F4320321001 |
| awards[2].display_name | |
| awards[2].funder_award_id | 61702135 |
| awards[2].funder_display_name | National Natural Science Foundation of China |
| biblio.issue | |
| biblio.volume | 13 |
| biblio.last_page | 54610 |
| biblio.first_page | 54601 |
| topics[0].id | https://openalex.org/T11448 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9772999882698059 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Face recognition and analysis |
| topics[1].id | https://openalex.org/T12111 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9460999965667725 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2209 |
| topics[1].subfield.display_name | Industrial and Manufacturing Engineering |
| topics[1].display_name | Industrial Vision Systems and Defect Detection |
| topics[2].id | https://openalex.org/T10331 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9337000250816345 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1707 |
| topics[2].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[2].display_name | Video Surveillance and Tracking Methods |
| funders[0].id | https://openalex.org/F4320321001 |
| funders[0].ror | https://ror.org/01h0zpd94 |
| funders[0].display_name | National Natural Science Foundation of China |
| is_xpac | False |
| apc_list.value | 1850 |
| apc_list.currency | USD |
| apc_list.value_usd | 1850 |
| apc_paid.value | 1850 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 1850 |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.6892147064208984 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C11413529 |
| concepts[1].level | 1 |
| concepts[1].score | 0.4334174394607544 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[1].display_name | Algorithm |
| concepts[2].id | https://openalex.org/C31972630 |
| concepts[2].level | 1 |
| concepts[2].score | 0.35452908277511597 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[2].display_name | Computer vision |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.6892147064208984 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/algorithm |
| keywords[1].score | 0.4334174394607544 |
| keywords[1].display_name | Algorithm |
| keywords[2].id | https://openalex.org/keywords/computer-vision |
| keywords[2].score | 0.35452908277511597 |
| keywords[2].display_name | Computer vision |
| language | en |
| locations[0].id | doi:10.1109/access.2025.3551892 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2485537415 |
| locations[0].source.issn | 2169-3536 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2169-3536 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | IEEE Access |
| locations[0].source.host_organization | https://openalex.org/P4310319808 |
| locations[0].source.host_organization_name | Institute of Electrical and Electronics Engineers |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319808 |
| locations[0].source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | IEEE Access |
| locations[0].landing_page_url | https://doi.org/10.1109/access.2025.3551892 |
| locations[1].id | pmh:oai:doaj.org/article:530b69a6fc87466c803d757e1128aaf5 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | IEEE Access, Vol 13, Pp 54601-54610 (2025) |
| locations[1].landing_page_url | https://doaj.org/article/530b69a6fc87466c803d757e1128aaf5 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5100725992 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-0939-9145 |
| authorships[0].author.display_name | Peng Wen |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I143413998 |
| authorships[0].affiliations[0].raw_affiliation_string | School of Information Science and Technology, Qingdao University of Science and Technology, Qingdao Shandong, China |
| authorships[0].institutions[0].id | https://openalex.org/I143413998 |
| authorships[0].institutions[0].ror | https://ror.org/041j8js14 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I143413998 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Qingdao University of Science and Technology |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Peng Wen |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | School of Information Science and Technology, Qingdao University of Science and Technology, Qingdao Shandong, China |
| authorships[1].author.id | https://openalex.org/A5032445930 |
| authorships[1].author.orcid | https://orcid.org/0009-0009-3114-5484 |
| authorships[1].author.display_name | Zhengyi Yuan |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I143413998 |
| authorships[1].affiliations[0].raw_affiliation_string | School of Information Science and Technology, Qingdao University of Science and Technology, Qingdao Shandong, China |
| authorships[1].institutions[0].id | https://openalex.org/I143413998 |
| authorships[1].institutions[0].ror | https://ror.org/041j8js14 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I143413998 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Qingdao University of Science and Technology |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Zhengyi Yuan |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | School of Information Science and Technology, Qingdao University of Science and Technology, Qingdao Shandong, China |
| authorships[2].author.id | https://openalex.org/A5025031597 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-9100-6608 |
| authorships[2].author.display_name | Junhu Zhang |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I143413998 |
| authorships[2].affiliations[0].raw_affiliation_string | School of Information Science and Technology, Qingdao University of Science and Technology, Qingdao Shandong, China |
| authorships[2].institutions[0].id | https://openalex.org/I143413998 |
| authorships[2].institutions[0].ror | https://ror.org/041j8js14 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I143413998 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Qingdao University of Science and Technology |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Junhu Zhang |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | School of Information Science and Technology, Qingdao University of Science and Technology, Qingdao Shandong, China |
| authorships[3].author.id | https://openalex.org/A5100453276 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-5322-5375 |
| authorships[3].author.display_name | Haitao Li |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I143413998 |
| authorships[3].affiliations[0].raw_affiliation_string | School of Information Science and Technology, Qingdao University of Science and Technology, Qingdao Shandong, China |
| authorships[3].institutions[0].id | https://openalex.org/I143413998 |
| authorships[3].institutions[0].ror | https://ror.org/041j8js14 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I143413998 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Qingdao University of Science and Technology |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Haitao Li |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | School of Information Science and Technology, Qingdao University of Science and Technology, Qingdao Shandong, China |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1109/access.2025.3551892 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | MF-YOLO: Mask Wearing Detection Algorithm for Dense Environments |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11448 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9772999882698059 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Face recognition and analysis |
| related_works | https://openalex.org/W4391375266, https://openalex.org/W2899084033, https://openalex.org/W2748952813, https://openalex.org/W2051487156, https://openalex.org/W2073681303, https://openalex.org/W2390279801, https://openalex.org/W4391913857, https://openalex.org/W2358668433, https://openalex.org/W4396701345, https://openalex.org/W2376932109 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | doi:10.1109/access.2025.3551892 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2485537415 |
| best_oa_location.source.issn | 2169-3536 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2169-3536 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | IEEE Access |
| best_oa_location.source.host_organization | https://openalex.org/P4310319808 |
| best_oa_location.source.host_organization_name | Institute of Electrical and Electronics Engineers |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310319808 |
| best_oa_location.source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | IEEE Access |
| best_oa_location.landing_page_url | https://doi.org/10.1109/access.2025.3551892 |
| primary_location.id | doi:10.1109/access.2025.3551892 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2485537415 |
| primary_location.source.issn | 2169-3536 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2169-3536 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | IEEE Access |
| primary_location.source.host_organization | https://openalex.org/P4310319808 |
| primary_location.source.host_organization_name | Institute of Electrical and Electronics Engineers |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319808 |
| primary_location.source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | IEEE Access |
| primary_location.landing_page_url | https://doi.org/10.1109/access.2025.3551892 |
| publication_date | 2025-01-01 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W3009607814, https://openalex.org/W4322492330, https://openalex.org/W4353065795, https://openalex.org/W3130409332, https://openalex.org/W4220829477, https://openalex.org/W3212737115, https://openalex.org/W4205943930, https://openalex.org/W3146066083, https://openalex.org/W4283028468, https://openalex.org/W4362631162, https://openalex.org/W4383113375, https://openalex.org/W639708223, https://openalex.org/W4402754239, https://openalex.org/W6714138976, https://openalex.org/W2885605338, https://openalex.org/W3022728207, https://openalex.org/W4386167958, https://openalex.org/W4379013835, https://openalex.org/W2963037989, https://openalex.org/W2570343428, https://openalex.org/W4385955442, https://openalex.org/W4389885225, https://openalex.org/W4401415788, https://openalex.org/W4389204543, https://openalex.org/W4304128598, https://openalex.org/W4372263412, https://openalex.org/W4394593021, https://openalex.org/W4320917843, https://openalex.org/W4280583405, https://openalex.org/W4395082537, https://openalex.org/W4399946473, https://openalex.org/W4389781022, https://openalex.org/W4393189310, https://openalex.org/W4401454884, https://openalex.org/W4386838472, https://openalex.org/W4313513500, https://openalex.org/W4389778477, https://openalex.org/W4386257276, https://openalex.org/W4385245566, https://openalex.org/W3138516171, https://openalex.org/W4391630905, https://openalex.org/W4400264121, https://openalex.org/W4396918543, https://openalex.org/W6868582632, https://openalex.org/W6873881505, https://openalex.org/W6780945792 |
| referenced_works_count | 46 |
| abstract_inverted_index.a | 26, 53, 86 |
| abstract_inverted_index.To | 0 |
| abstract_inverted_index.an | 115 |
| abstract_inverted_index.at | 138 |
| abstract_inverted_index.by | 65, 165 |
| abstract_inverted_index.in | 10, 144 |
| abstract_inverted_index.is | 31, 57, 119 |
| abstract_inverted_index.of | 4, 43, 49, 112, 125 |
| abstract_inverted_index.on | 104, 182 |
| abstract_inverted_index.to | 33, 59, 100, 121, 135, 171 |
| abstract_inverted_index.we | 17, 84 |
| abstract_inverted_index.Our | 175 |
| abstract_inverted_index.and | 7, 94, 107, 149, 167, 177 |
| abstract_inverted_index.are | 179 |
| abstract_inverted_index.for | 80 |
| abstract_inverted_index.key | 105 |
| abstract_inverted_index.map | 28, 37 |
| abstract_inverted_index.the | 2, 19, 35, 40, 47, 98, 110, 123, 132, 139, 145, 150, 156, 172 |
| abstract_inverted_index.2.1% | 166 |
| abstract_inverted_index.MASK | 147 |
| abstract_inverted_index.SFMD | 152 |
| abstract_inverted_index.both | 92 |
| abstract_inverted_index.code | 176 |
| abstract_inverted_index.edge | 62 |
| abstract_inverted_index.face | 11, 21 |
| abstract_inverted_index.fine | 61 |
| abstract_inverted_index.fuse | 136 |
| abstract_inverted_index.into | 39 |
| abstract_inverted_index.loss | 124 |
| abstract_inverted_index.mask | 12, 22 |
| abstract_inverted_index.more | 102 |
| abstract_inverted_index.same | 140 |
| abstract_inverted_index.that | 90, 155 |
| abstract_inverted_index.with | 70 |
| abstract_inverted_index.1.3%, | 168 |
| abstract_inverted_index.dense | 15 |
| abstract_inverted_index.false | 5 |
| abstract_inverted_index.focus | 101 |
| abstract_inverted_index.mixed | 87 |
| abstract_inverted_index.model | 50, 99 |
| abstract_inverted_index.small | 81 |
| abstract_inverted_index.while | 162 |
| abstract_inverted_index.First, | 25 |
| abstract_inverted_index.GitHub | 183 |
| abstract_inverted_index.better | 108 |
| abstract_inverted_index.during | 128 |
| abstract_inverted_index.global | 67 |
| abstract_inverted_index.missed | 8, 77 |
| abstract_inverted_index.model. | 24 |
| abstract_inverted_index.module | 56 |
| abstract_inverted_index.public | 146 |
| abstract_inverted_index.scale. | 141 |
| abstract_inverted_index.target | 109 |
| abstract_inverted_index.within | 14 |
| abstract_inverted_index.MF-YOLO | 20 |
| abstract_inverted_index.ability | 134 |
| abstract_inverted_index.address | 1 |
| abstract_inverted_index.capture | 60 |
| abstract_inverted_index.channel | 93 |
| abstract_inverted_index.dataset | 148, 153 |
| abstract_inverted_index.feature | 27, 36, 68, 126 |
| abstract_inverted_index.initial | 41 |
| abstract_inverted_index.objects | 111 |
| abstract_inverted_index.propose | 18 |
| abstract_inverted_index.results | 143 |
| abstract_inverted_index.sliding | 71 |
| abstract_inverted_index.spatial | 95 |
| abstract_inverted_index.weights | 42 |
| abstract_inverted_index.Finally, | 114 |
| abstract_inverted_index.accuracy | 164 |
| abstract_inverted_index.approach | 30 |
| abstract_inverted_index.compared | 170 |
| abstract_inverted_index.datasets | 178 |
| abstract_inverted_index.designed | 58 |
| abstract_inverted_index.employed | 120 |
| abstract_inverted_index.enabling | 97 |
| abstract_inverted_index.enhanced | 116 |
| abstract_inverted_index.features | 64, 106 |
| abstract_inverted_index.kernels, | 45 |
| abstract_inverted_index.mitigate | 122 |
| abstract_inverted_index.network. | 174 |
| abstract_inverted_index.objects. | 82 |
| abstract_inverted_index.original | 173 |
| abstract_inverted_index.position | 63 |
| abstract_inverted_index.proposed | 157 |
| abstract_inverted_index.publicly | 180 |
| abstract_inverted_index.reducing | 76 |
| abstract_inverted_index.released | 181 |
| abstract_inverted_index.residual | 54 |
| abstract_inverted_index.strategy | 118 |
| abstract_inverted_index.algorithm | 158 |
| abstract_inverted_index.attention | 88 |
| abstract_inverted_index.combining | 66 |
| abstract_inverted_index.detection | 13, 23 |
| abstract_inverted_index.improving | 131, 163 |
| abstract_inverted_index.interest. | 113 |
| abstract_inverted_index.introduce | 85 |
| abstract_inverted_index.mechanism | 89 |
| abstract_inverted_index.positives | 6 |
| abstract_inverted_index.training. | 51 |
| abstract_inverted_index.transform | 34 |
| abstract_inverted_index.attention, | 96 |
| abstract_inverted_index.challenges | 3 |
| abstract_inverted_index.detections | 9 |
| abstract_inverted_index.especially | 79 |
| abstract_inverted_index.extraction | 69 |
| abstract_inverted_index.integrates | 91 |
| abstract_inverted_index.introduced | 32 |
| abstract_inverted_index.self-built | 151 |
| abstract_inverted_index.accelerates | 160 |
| abstract_inverted_index.convergence | 48, 161 |
| abstract_inverted_index.convolution | 29 |
| abstract_inverted_index.demonstrate | 154 |
| abstract_inverted_index.detections, | 78 |
| abstract_inverted_index.effectively | 75, 103 |
| abstract_inverted_index.information | 38, 73, 127, 137 |
| abstract_inverted_index.Experimental | 142 |
| abstract_inverted_index.Furthermore, | 83 |
| abstract_inverted_index.accelerating | 46 |
| abstract_inverted_index.interaction, | 74 |
| abstract_inverted_index.window-based | 72 |
| abstract_inverted_index.Additionally, | 52 |
| abstract_inverted_index.convolutional | 44 |
| abstract_inverted_index.environments, | 16 |
| abstract_inverted_index.respectively, | 169 |
| abstract_inverted_index.significantly | 159 |
| abstract_inverted_index.transmission, | 130 |
| abstract_inverted_index.feature-fusion | 117 |
| abstract_inverted_index.layer-by-layer | 129 |
| abstract_inverted_index.model’s | 133 |
| abstract_inverted_index.self-attention | 55 |
| abstract_inverted_index.<uri>https://github.com/wenpengshishuaige/MF-YOLO</uri>. | 184 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile.value | 0.07364101 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |