MFBind: a Multi-Fidelity Approach for Evaluating Drug Compounds in Practical Generative Modeling Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2402.10387
Current generative models for drug discovery primarily use molecular docking to evaluate the quality of generated compounds. However, such models are often not useful in practice because even compounds with high docking scores do not consistently show experimental activity. More accurate methods for activity prediction exist, such as molecular dynamics based binding free energy calculations, but they are too computationally expensive to use in a generative model. We propose a multi-fidelity approach, Multi-Fidelity Bind (MFBind), to achieve the optimal trade-off between accuracy and computational cost. MFBind integrates docking and binding free energy simulators to train a multi-fidelity deep surrogate model with active learning. Our deep surrogate model utilizes a pretraining technique and linear prediction heads to efficiently fit small amounts of high-fidelity data. We perform extensive experiments and show that MFBind (1) outperforms other state-of-the-art single and multi-fidelity baselines in surrogate modeling, and (2) boosts the performance of generative models with markedly higher quality compounds.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2402.10387
- https://arxiv.org/pdf/2402.10387
- OA Status
- green
- Cited By
- 3
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4391940739
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4391940739Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2402.10387Digital Object Identifier
- Title
-
MFBind: a Multi-Fidelity Approach for Evaluating Drug Compounds in Practical Generative ModelingWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-02-16Full publication date if available
- Authors
-
Peter Eckmann, Dongxia Wu, Germano Heinzelmann, Michael K. Gilson, Rose YuList of authors in order
- Landing page
-
https://arxiv.org/abs/2402.10387Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2402.10387Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2402.10387Direct OA link when available
- Concepts
-
Generative grammar, Fidelity, Drug, Computer science, Artificial intelligence, Pharmacology, Medicine, TelecommunicationsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
3Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1, 2024: 2Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4391940739 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2402.10387 |
| ids.doi | https://doi.org/10.48550/arxiv.2402.10387 |
| ids.openalex | https://openalex.org/W4391940739 |
| fwci | |
| type | preprint |
| title | MFBind: a Multi-Fidelity Approach for Evaluating Drug Compounds in Practical Generative Modeling |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10211 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.3946000039577484 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1703 |
| topics[0].subfield.display_name | Computational Theory and Mathematics |
| topics[0].display_name | Computational Drug Discovery Methods |
| topics[1].id | https://openalex.org/T10621 |
| topics[1].field.id | https://openalex.org/fields/13 |
| topics[1].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[1].score | 0.3756999969482422 |
| topics[1].domain.id | https://openalex.org/domains/1 |
| topics[1].domain.display_name | Life Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1312 |
| topics[1].subfield.display_name | Molecular Biology |
| topics[1].display_name | Gene Regulatory Network Analysis |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C39890363 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6651642322540283 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q36108 |
| concepts[0].display_name | Generative grammar |
| concepts[1].id | https://openalex.org/C2776459999 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6393904685974121 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q2119376 |
| concepts[1].display_name | Fidelity |
| concepts[2].id | https://openalex.org/C2780035454 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5597737431526184 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q8386 |
| concepts[2].display_name | Drug |
| concepts[3].id | https://openalex.org/C41008148 |
| concepts[3].level | 0 |
| concepts[3].score | 0.5490666627883911 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[3].display_name | Computer science |
| concepts[4].id | https://openalex.org/C154945302 |
| concepts[4].level | 1 |
| concepts[4].score | 0.2951642870903015 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[4].display_name | Artificial intelligence |
| concepts[5].id | https://openalex.org/C98274493 |
| concepts[5].level | 1 |
| concepts[5].score | 0.1984507441520691 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q128406 |
| concepts[5].display_name | Pharmacology |
| concepts[6].id | https://openalex.org/C71924100 |
| concepts[6].level | 0 |
| concepts[6].score | 0.18572530150413513 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[6].display_name | Medicine |
| concepts[7].id | https://openalex.org/C76155785 |
| concepts[7].level | 1 |
| concepts[7].score | 0.0 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q418 |
| concepts[7].display_name | Telecommunications |
| keywords[0].id | https://openalex.org/keywords/generative-grammar |
| keywords[0].score | 0.6651642322540283 |
| keywords[0].display_name | Generative grammar |
| keywords[1].id | https://openalex.org/keywords/fidelity |
| keywords[1].score | 0.6393904685974121 |
| keywords[1].display_name | Fidelity |
| keywords[2].id | https://openalex.org/keywords/drug |
| keywords[2].score | 0.5597737431526184 |
| keywords[2].display_name | Drug |
| keywords[3].id | https://openalex.org/keywords/computer-science |
| keywords[3].score | 0.5490666627883911 |
| keywords[3].display_name | Computer science |
| keywords[4].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[4].score | 0.2951642870903015 |
| keywords[4].display_name | Artificial intelligence |
| keywords[5].id | https://openalex.org/keywords/pharmacology |
| keywords[5].score | 0.1984507441520691 |
| keywords[5].display_name | Pharmacology |
| keywords[6].id | https://openalex.org/keywords/medicine |
| keywords[6].score | 0.18572530150413513 |
| keywords[6].display_name | Medicine |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2402.10387 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2402.10387 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2402.10387 |
| locations[1].id | doi:10.48550/arxiv.2402.10387 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2402.10387 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5101771743 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-5388-9451 |
| authorships[0].author.display_name | Peter Eckmann |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Eckmann, Peter |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5100943740 |
| authorships[1].author.orcid | https://orcid.org/0009-0005-5059-2395 |
| authorships[1].author.display_name | Dongxia Wu |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Wu, Dongxia |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5026255015 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-7168-6941 |
| authorships[2].author.display_name | Germano Heinzelmann |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Heinzelmann, Germano |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5049982297 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-3375-1738 |
| authorships[3].author.display_name | Michael K. Gilson |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Gilson, Michael K |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5057778679 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-8491-7937 |
| authorships[4].author.display_name | Rose Yu |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Yu, Rose |
| authorships[4].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2402.10387 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2024-02-20T00:00:00 |
| display_name | MFBind: a Multi-Fidelity Approach for Evaluating Drug Compounds in Practical Generative Modeling |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10211 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.3946000039577484 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1703 |
| primary_topic.subfield.display_name | Computational Theory and Mathematics |
| primary_topic.display_name | Computational Drug Discovery Methods |
| related_works | https://openalex.org/W2748952813, https://openalex.org/W2381850946, https://openalex.org/W4380449851, https://openalex.org/W3125091513, https://openalex.org/W4318832338, https://openalex.org/W2380075625, https://openalex.org/W2390279801, https://openalex.org/W2358668433, https://openalex.org/W2376932109, https://openalex.org/W2001405890 |
| cited_by_count | 3 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 2 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2402.10387 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2402.10387 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2402.10387 |
| primary_location.id | pmh:oai:arXiv.org:2402.10387 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2402.10387 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2402.10387 |
| publication_date | 2024-02-16 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 64, 69, 95, 108 |
| abstract_inverted_index.We | 67, 123 |
| abstract_inverted_index.as | 47 |
| abstract_inverted_index.do | 33 |
| abstract_inverted_index.in | 24, 63, 139 |
| abstract_inverted_index.of | 14, 120, 147 |
| abstract_inverted_index.to | 10, 61, 75, 93, 115 |
| abstract_inverted_index.(1) | 131 |
| abstract_inverted_index.(2) | 143 |
| abstract_inverted_index.Our | 103 |
| abstract_inverted_index.and | 82, 88, 111, 127, 136, 142 |
| abstract_inverted_index.are | 20, 57 |
| abstract_inverted_index.but | 55 |
| abstract_inverted_index.fit | 117 |
| abstract_inverted_index.for | 3, 42 |
| abstract_inverted_index.not | 22, 34 |
| abstract_inverted_index.the | 12, 77, 145 |
| abstract_inverted_index.too | 58 |
| abstract_inverted_index.use | 7, 62 |
| abstract_inverted_index.Bind | 73 |
| abstract_inverted_index.More | 39 |
| abstract_inverted_index.deep | 97, 104 |
| abstract_inverted_index.drug | 4 |
| abstract_inverted_index.even | 27 |
| abstract_inverted_index.free | 52, 90 |
| abstract_inverted_index.high | 30 |
| abstract_inverted_index.show | 36, 128 |
| abstract_inverted_index.such | 18, 46 |
| abstract_inverted_index.that | 129 |
| abstract_inverted_index.they | 56 |
| abstract_inverted_index.with | 29, 100, 150 |
| abstract_inverted_index.based | 50 |
| abstract_inverted_index.cost. | 84 |
| abstract_inverted_index.data. | 122 |
| abstract_inverted_index.heads | 114 |
| abstract_inverted_index.model | 99, 106 |
| abstract_inverted_index.often | 21 |
| abstract_inverted_index.other | 133 |
| abstract_inverted_index.small | 118 |
| abstract_inverted_index.train | 94 |
| abstract_inverted_index.MFBind | 85, 130 |
| abstract_inverted_index.active | 101 |
| abstract_inverted_index.boosts | 144 |
| abstract_inverted_index.energy | 53, 91 |
| abstract_inverted_index.exist, | 45 |
| abstract_inverted_index.higher | 152 |
| abstract_inverted_index.linear | 112 |
| abstract_inverted_index.model. | 66 |
| abstract_inverted_index.models | 2, 19, 149 |
| abstract_inverted_index.scores | 32 |
| abstract_inverted_index.single | 135 |
| abstract_inverted_index.useful | 23 |
| abstract_inverted_index.Current | 0 |
| abstract_inverted_index.achieve | 76 |
| abstract_inverted_index.amounts | 119 |
| abstract_inverted_index.because | 26 |
| abstract_inverted_index.between | 80 |
| abstract_inverted_index.binding | 51, 89 |
| abstract_inverted_index.docking | 9, 31, 87 |
| abstract_inverted_index.methods | 41 |
| abstract_inverted_index.optimal | 78 |
| abstract_inverted_index.perform | 124 |
| abstract_inverted_index.propose | 68 |
| abstract_inverted_index.quality | 13, 153 |
| abstract_inverted_index.However, | 17 |
| abstract_inverted_index.accuracy | 81 |
| abstract_inverted_index.accurate | 40 |
| abstract_inverted_index.activity | 43 |
| abstract_inverted_index.dynamics | 49 |
| abstract_inverted_index.evaluate | 11 |
| abstract_inverted_index.markedly | 151 |
| abstract_inverted_index.practice | 25 |
| abstract_inverted_index.utilizes | 107 |
| abstract_inverted_index.(MFBind), | 74 |
| abstract_inverted_index.activity. | 38 |
| abstract_inverted_index.approach, | 71 |
| abstract_inverted_index.baselines | 138 |
| abstract_inverted_index.compounds | 28 |
| abstract_inverted_index.discovery | 5 |
| abstract_inverted_index.expensive | 60 |
| abstract_inverted_index.extensive | 125 |
| abstract_inverted_index.generated | 15 |
| abstract_inverted_index.learning. | 102 |
| abstract_inverted_index.modeling, | 141 |
| abstract_inverted_index.molecular | 8, 48 |
| abstract_inverted_index.primarily | 6 |
| abstract_inverted_index.surrogate | 98, 105, 140 |
| abstract_inverted_index.technique | 110 |
| abstract_inverted_index.trade-off | 79 |
| abstract_inverted_index.compounds. | 16, 154 |
| abstract_inverted_index.generative | 1, 65, 148 |
| abstract_inverted_index.integrates | 86 |
| abstract_inverted_index.prediction | 44, 113 |
| abstract_inverted_index.simulators | 92 |
| abstract_inverted_index.efficiently | 116 |
| abstract_inverted_index.experiments | 126 |
| abstract_inverted_index.outperforms | 132 |
| abstract_inverted_index.performance | 146 |
| abstract_inverted_index.pretraining | 109 |
| abstract_inverted_index.consistently | 35 |
| abstract_inverted_index.experimental | 37 |
| abstract_inverted_index.calculations, | 54 |
| abstract_inverted_index.computational | 83 |
| abstract_inverted_index.high-fidelity | 121 |
| abstract_inverted_index.Multi-Fidelity | 72 |
| abstract_inverted_index.multi-fidelity | 70, 96, 137 |
| abstract_inverted_index.computationally | 59 |
| abstract_inverted_index.state-of-the-art | 134 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 5 |
| citation_normalized_percentile |