MFDANet: Multi-Scale Feature Dual-Stream Aggregation Network for Salient Object Detection Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.3390/electronics12132880
With the development of deep learning, significant improvements and optimizations have been made in salient object detection. However, many salient object detection methods have limitations, such as insufficient context information extraction, limited interaction modes for different level features, and potential information loss due to a single interaction mode. In order to solve the aforementioned issues, we proposed a dual-stream aggregation network based on multi-scale features, which consists of two main modules, namely a residual context information extraction (RCIE) module and a dense dual-stream aggregation (DDA) module. Firstly, the RCIE module was designed to fully extract context information by connecting features from different receptive fields via residual connections, where convolutional groups composed of asymmetric convolution and dilated convolution are used to extract features from different receptive fields. Secondly, the DDA module aimed to enhance the relationships between different level features by leveraging dense connections to obtain high-quality feature information. Finally, two interaction modes were used for dual-stream aggregation to generate saliency maps. Extensive experiments on 5 benchmark datasets show that the proposed model performs favorably against 15 state-of-the-art methods.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3390/electronics12132880
- https://www.mdpi.com/2079-9292/12/13/2880/pdf?version=1688036876
- OA Status
- gold
- References
- 38
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4382791854
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4382791854Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/electronics12132880Digital Object Identifier
- Title
-
MFDANet: Multi-Scale Feature Dual-Stream Aggregation Network for Salient Object DetectionWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-06-29Full publication date if available
- Authors
-
Bin Ge, Jiajia Pei, Chenxing Xia, Taolin WuList of authors in order
- Landing page
-
https://doi.org/10.3390/electronics12132880Publisher landing page
- PDF URL
-
https://www.mdpi.com/2079-9292/12/13/2880/pdf?version=1688036876Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.mdpi.com/2079-9292/12/13/2880/pdf?version=1688036876Direct OA link when available
- Concepts
-
Computer science, Context (archaeology), Convolution (computer science), Benchmark (surveying), Artificial intelligence, Feature extraction, Pattern recognition (psychology), Residual, Feature (linguistics), Dual (grammatical number), Salient, Object detection, Algorithm, Artificial neural network, Geography, Philosophy, Linguistics, Geodesy, Art, Biology, Literature, PaleontologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
38Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4382791854 |
|---|---|
| doi | https://doi.org/10.3390/electronics12132880 |
| ids.doi | https://doi.org/10.3390/electronics12132880 |
| ids.openalex | https://openalex.org/W4382791854 |
| fwci | 0.0 |
| type | article |
| title | MFDANet: Multi-Scale Feature Dual-Stream Aggregation Network for Salient Object Detection |
| awards[0].id | https://openalex.org/G936415653 |
| awards[0].funder_id | https://openalex.org/F4320321001 |
| awards[0].display_name | |
| awards[0].funder_award_id | 62102003 |
| awards[0].funder_display_name | National Natural Science Foundation of China |
| awards[1].id | https://openalex.org/G4987794879 |
| awards[1].funder_id | https://openalex.org/F4320335777 |
| awards[1].display_name | |
| awards[1].funder_award_id | 2020YFB1314103 |
| awards[1].funder_display_name | National Key Research and Development Program of China |
| awards[2].id | https://openalex.org/G6594967240 |
| awards[2].funder_id | https://openalex.org/F4320331759 |
| awards[2].display_name | |
| awards[2].funder_award_id | 2022B623 |
| awards[2].funder_display_name | Anhui Postdoctoral Science Foundation |
| awards[3].id | https://openalex.org/G3032002779 |
| awards[3].funder_id | https://openalex.org/F4320334897 |
| awards[3].display_name | |
| awards[3].funder_award_id | 2108085QF258 |
| awards[3].funder_display_name | Natural Science Foundation of Anhui Province |
| biblio.issue | 13 |
| biblio.volume | 12 |
| biblio.last_page | 2880 |
| biblio.first_page | 2880 |
| topics[0].id | https://openalex.org/T11605 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 1.0 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Visual Attention and Saliency Detection |
| topics[1].id | https://openalex.org/T10971 |
| topics[1].field.id | https://openalex.org/fields/28 |
| topics[1].field.display_name | Neuroscience |
| topics[1].score | 0.980400025844574 |
| topics[1].domain.id | https://openalex.org/domains/1 |
| topics[1].domain.display_name | Life Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2809 |
| topics[1].subfield.display_name | Sensory Systems |
| topics[1].display_name | Olfactory and Sensory Function Studies |
| topics[2].id | https://openalex.org/T11094 |
| topics[2].field.id | https://openalex.org/fields/28 |
| topics[2].field.display_name | Neuroscience |
| topics[2].score | 0.9664000272750854 |
| topics[2].domain.id | https://openalex.org/domains/1 |
| topics[2].domain.display_name | Life Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2805 |
| topics[2].subfield.display_name | Cognitive Neuroscience |
| topics[2].display_name | Face Recognition and Perception |
| funders[0].id | https://openalex.org/F4320321001 |
| funders[0].ror | https://ror.org/01h0zpd94 |
| funders[0].display_name | National Natural Science Foundation of China |
| funders[1].id | https://openalex.org/F4320331759 |
| funders[1].ror | |
| funders[1].display_name | Anhui Postdoctoral Science Foundation |
| funders[2].id | https://openalex.org/F4320334897 |
| funders[2].ror | |
| funders[2].display_name | Natural Science Foundation of Anhui Province |
| funders[3].id | https://openalex.org/F4320335777 |
| funders[3].ror | |
| funders[3].display_name | National Key Research and Development Program of China |
| is_xpac | False |
| apc_list.value | 2000 |
| apc_list.currency | CHF |
| apc_list.value_usd | 2165 |
| apc_paid.value | 2000 |
| apc_paid.currency | CHF |
| apc_paid.value_usd | 2165 |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.7997584342956543 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C2779343474 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6119258403778076 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q3109175 |
| concepts[1].display_name | Context (archaeology) |
| concepts[2].id | https://openalex.org/C45347329 |
| concepts[2].level | 3 |
| concepts[2].score | 0.6079770922660828 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q5166604 |
| concepts[2].display_name | Convolution (computer science) |
| concepts[3].id | https://openalex.org/C185798385 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6078077554702759 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q1161707 |
| concepts[3].display_name | Benchmark (surveying) |
| concepts[4].id | https://openalex.org/C154945302 |
| concepts[4].level | 1 |
| concepts[4].score | 0.6037627458572388 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[4].display_name | Artificial intelligence |
| concepts[5].id | https://openalex.org/C52622490 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5864802598953247 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1026626 |
| concepts[5].display_name | Feature extraction |
| concepts[6].id | https://openalex.org/C153180895 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5846447348594666 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[6].display_name | Pattern recognition (psychology) |
| concepts[7].id | https://openalex.org/C155512373 |
| concepts[7].level | 2 |
| concepts[7].score | 0.576248824596405 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q287450 |
| concepts[7].display_name | Residual |
| concepts[8].id | https://openalex.org/C2776401178 |
| concepts[8].level | 2 |
| concepts[8].score | 0.5417481064796448 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q12050496 |
| concepts[8].display_name | Feature (linguistics) |
| concepts[9].id | https://openalex.org/C2780980858 |
| concepts[9].level | 2 |
| concepts[9].score | 0.5309485793113708 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q110022 |
| concepts[9].display_name | Dual (grammatical number) |
| concepts[10].id | https://openalex.org/C2780719617 |
| concepts[10].level | 2 |
| concepts[10].score | 0.49651771783828735 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q1030752 |
| concepts[10].display_name | Salient |
| concepts[11].id | https://openalex.org/C2776151529 |
| concepts[11].level | 3 |
| concepts[11].score | 0.4471361041069031 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q3045304 |
| concepts[11].display_name | Object detection |
| concepts[12].id | https://openalex.org/C11413529 |
| concepts[12].level | 1 |
| concepts[12].score | 0.18373331427574158 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[12].display_name | Algorithm |
| concepts[13].id | https://openalex.org/C50644808 |
| concepts[13].level | 2 |
| concepts[13].score | 0.15770238637924194 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[13].display_name | Artificial neural network |
| concepts[14].id | https://openalex.org/C205649164 |
| concepts[14].level | 0 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[14].display_name | Geography |
| concepts[15].id | https://openalex.org/C138885662 |
| concepts[15].level | 0 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[15].display_name | Philosophy |
| concepts[16].id | https://openalex.org/C41895202 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q8162 |
| concepts[16].display_name | Linguistics |
| concepts[17].id | https://openalex.org/C13280743 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q131089 |
| concepts[17].display_name | Geodesy |
| concepts[18].id | https://openalex.org/C142362112 |
| concepts[18].level | 0 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q735 |
| concepts[18].display_name | Art |
| concepts[19].id | https://openalex.org/C86803240 |
| concepts[19].level | 0 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[19].display_name | Biology |
| concepts[20].id | https://openalex.org/C124952713 |
| concepts[20].level | 1 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q8242 |
| concepts[20].display_name | Literature |
| concepts[21].id | https://openalex.org/C151730666 |
| concepts[21].level | 1 |
| concepts[21].score | 0.0 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q7205 |
| concepts[21].display_name | Paleontology |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.7997584342956543 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/context |
| keywords[1].score | 0.6119258403778076 |
| keywords[1].display_name | Context (archaeology) |
| keywords[2].id | https://openalex.org/keywords/convolution |
| keywords[2].score | 0.6079770922660828 |
| keywords[2].display_name | Convolution (computer science) |
| keywords[3].id | https://openalex.org/keywords/benchmark |
| keywords[3].score | 0.6078077554702759 |
| keywords[3].display_name | Benchmark (surveying) |
| keywords[4].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[4].score | 0.6037627458572388 |
| keywords[4].display_name | Artificial intelligence |
| keywords[5].id | https://openalex.org/keywords/feature-extraction |
| keywords[5].score | 0.5864802598953247 |
| keywords[5].display_name | Feature extraction |
| keywords[6].id | https://openalex.org/keywords/pattern-recognition |
| keywords[6].score | 0.5846447348594666 |
| keywords[6].display_name | Pattern recognition (psychology) |
| keywords[7].id | https://openalex.org/keywords/residual |
| keywords[7].score | 0.576248824596405 |
| keywords[7].display_name | Residual |
| keywords[8].id | https://openalex.org/keywords/feature |
| keywords[8].score | 0.5417481064796448 |
| keywords[8].display_name | Feature (linguistics) |
| keywords[9].id | https://openalex.org/keywords/dual |
| keywords[9].score | 0.5309485793113708 |
| keywords[9].display_name | Dual (grammatical number) |
| keywords[10].id | https://openalex.org/keywords/salient |
| keywords[10].score | 0.49651771783828735 |
| keywords[10].display_name | Salient |
| keywords[11].id | https://openalex.org/keywords/object-detection |
| keywords[11].score | 0.4471361041069031 |
| keywords[11].display_name | Object detection |
| keywords[12].id | https://openalex.org/keywords/algorithm |
| keywords[12].score | 0.18373331427574158 |
| keywords[12].display_name | Algorithm |
| keywords[13].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[13].score | 0.15770238637924194 |
| keywords[13].display_name | Artificial neural network |
| language | en |
| locations[0].id | doi:10.3390/electronics12132880 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210202905 |
| locations[0].source.issn | 2079-9292 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2079-9292 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Electronics |
| locations[0].source.host_organization | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.mdpi.com/2079-9292/12/13/2880/pdf?version=1688036876 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Electronics |
| locations[0].landing_page_url | https://doi.org/10.3390/electronics12132880 |
| locations[1].id | pmh:oai:mdpi.com:/2079-9292/12/13/2880/ |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400947 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | MDPI (MDPI AG) |
| locations[1].source.host_organization | https://openalex.org/I4210097602 |
| locations[1].source.host_organization_name | Multidisciplinary Digital Publishing Institute (Switzerland) |
| locations[1].source.host_organization_lineage | https://openalex.org/I4210097602 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | Text |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Electronics; Volume 12; Issue 13; Pages: 2880 |
| locations[1].landing_page_url | https://dx.doi.org/10.3390/electronics12132880 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5033351506 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-9050-1105 |
| authorships[0].author.display_name | Bin Ge |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I184681353 |
| authorships[0].affiliations[0].raw_affiliation_string | College of Computer Science and Engineering, Anhui University of Science and Technology, Huainan 232001, China |
| authorships[0].institutions[0].id | https://openalex.org/I184681353 |
| authorships[0].institutions[0].ror | https://ror.org/00q9atg80 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I184681353 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Anhui University of Science and Technology |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Bin Ge |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | College of Computer Science and Engineering, Anhui University of Science and Technology, Huainan 232001, China |
| authorships[1].author.id | https://openalex.org/A5102530133 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Jiajia Pei |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I184681353 |
| authorships[1].affiliations[0].raw_affiliation_string | College of Computer Science and Engineering, Anhui University of Science and Technology, Huainan 232001, China |
| authorships[1].institutions[0].id | https://openalex.org/I184681353 |
| authorships[1].institutions[0].ror | https://ror.org/00q9atg80 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I184681353 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Anhui University of Science and Technology |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Jiajia Pei |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | College of Computer Science and Engineering, Anhui University of Science and Technology, Huainan 232001, China |
| authorships[2].author.id | https://openalex.org/A5087739571 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-0750-1265 |
| authorships[2].author.display_name | Chenxing Xia |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I184681353 |
| authorships[2].affiliations[0].raw_affiliation_string | College of Computer Science and Engineering, Anhui University of Science and Technology, Huainan 232001, China |
| authorships[2].affiliations[1].raw_affiliation_string | Institute of Energy, Hefei Comprehensive National Science Center, Hefei 230031, China |
| authorships[2].institutions[0].id | https://openalex.org/I184681353 |
| authorships[2].institutions[0].ror | https://ror.org/00q9atg80 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I184681353 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Anhui University of Science and Technology |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Chenxing Xia |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | College of Computer Science and Engineering, Anhui University of Science and Technology, Huainan 232001, China, Institute of Energy, Hefei Comprehensive National Science Center, Hefei 230031, China |
| authorships[3].author.id | https://openalex.org/A5104137774 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Taolin Wu |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I184681353 |
| authorships[3].affiliations[0].raw_affiliation_string | College of Computer Science and Engineering, Anhui University of Science and Technology, Huainan 232001, China |
| authorships[3].institutions[0].id | https://openalex.org/I184681353 |
| authorships[3].institutions[0].ror | https://ror.org/00q9atg80 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I184681353 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Anhui University of Science and Technology |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Taolin Wu |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | College of Computer Science and Engineering, Anhui University of Science and Technology, Huainan 232001, China |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.mdpi.com/2079-9292/12/13/2880/pdf?version=1688036876 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | MFDANet: Multi-Scale Feature Dual-Stream Aggregation Network for Salient Object Detection |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11605 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 1.0 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Visual Attention and Saliency Detection |
| related_works | https://openalex.org/W2329500892, https://openalex.org/W28991112, https://openalex.org/W2370726991, https://openalex.org/W2369710579, https://openalex.org/W2560215812, https://openalex.org/W4327728159, https://openalex.org/W4394266730, https://openalex.org/W1990856605, https://openalex.org/W2053783616, https://openalex.org/W2545348020 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | doi:10.3390/electronics12132880 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210202905 |
| best_oa_location.source.issn | 2079-9292 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2079-9292 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Electronics |
| best_oa_location.source.host_organization | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.mdpi.com/2079-9292/12/13/2880/pdf?version=1688036876 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Electronics |
| best_oa_location.landing_page_url | https://doi.org/10.3390/electronics12132880 |
| primary_location.id | doi:10.3390/electronics12132880 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210202905 |
| primary_location.source.issn | 2079-9292 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2079-9292 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Electronics |
| primary_location.source.host_organization | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.mdpi.com/2079-9292/12/13/2880/pdf?version=1688036876 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Electronics |
| primary_location.landing_page_url | https://doi.org/10.3390/electronics12132880 |
| publication_date | 2023-06-29 |
| publication_year | 2023 |
| referenced_works | https://openalex.org/W2117301471, https://openalex.org/W2887503470, https://openalex.org/W2415535521, https://openalex.org/W2026014384, https://openalex.org/W4239147634, https://openalex.org/W2039313011, https://openalex.org/W2161185676, https://openalex.org/W2080142539, https://openalex.org/W1903029394, https://openalex.org/W2798825526, https://openalex.org/W2769040523, https://openalex.org/W3025800305, https://openalex.org/W3043255456, https://openalex.org/W2963112696, https://openalex.org/W2963685207, https://openalex.org/W2989907986, https://openalex.org/W2990984982, https://openalex.org/W1947031653, https://openalex.org/W3029368604, https://openalex.org/W3173382343, https://openalex.org/W2981510929, https://openalex.org/W2939217524, https://openalex.org/W2799074129, https://openalex.org/W2132083787, https://openalex.org/W2780861787, https://openalex.org/W2002781701, https://openalex.org/W2086791339, https://openalex.org/W6639359414, https://openalex.org/W2740667773, https://openalex.org/W2948510860, https://openalex.org/W2990278031, https://openalex.org/W3035290198, https://openalex.org/W2997316506, https://openalex.org/W3018276607, https://openalex.org/W6788627440, https://openalex.org/W2963604034, https://openalex.org/W3122006940, https://openalex.org/W3107944836 |
| referenced_works_count | 38 |
| abstract_inverted_index.5 | 164 |
| abstract_inverted_index.a | 44, 57, 72, 80 |
| abstract_inverted_index.15 | 175 |
| abstract_inverted_index.In | 48 |
| abstract_inverted_index.as | 26 |
| abstract_inverted_index.by | 97, 139 |
| abstract_inverted_index.in | 13 |
| abstract_inverted_index.of | 3, 67, 111 |
| abstract_inverted_index.on | 62, 163 |
| abstract_inverted_index.to | 43, 50, 92, 119, 131, 143, 157 |
| abstract_inverted_index.we | 55 |
| abstract_inverted_index.DDA | 128 |
| abstract_inverted_index.and | 8, 38, 79, 114 |
| abstract_inverted_index.are | 117 |
| abstract_inverted_index.due | 42 |
| abstract_inverted_index.for | 34, 154 |
| abstract_inverted_index.the | 1, 52, 87, 127, 133, 169 |
| abstract_inverted_index.two | 68, 149 |
| abstract_inverted_index.via | 104 |
| abstract_inverted_index.was | 90 |
| abstract_inverted_index.RCIE | 88 |
| abstract_inverted_index.With | 0 |
| abstract_inverted_index.been | 11 |
| abstract_inverted_index.deep | 4 |
| abstract_inverted_index.from | 100, 122 |
| abstract_inverted_index.have | 10, 23 |
| abstract_inverted_index.loss | 41 |
| abstract_inverted_index.made | 12 |
| abstract_inverted_index.main | 69 |
| abstract_inverted_index.many | 18 |
| abstract_inverted_index.show | 167 |
| abstract_inverted_index.such | 25 |
| abstract_inverted_index.that | 168 |
| abstract_inverted_index.used | 118, 153 |
| abstract_inverted_index.were | 152 |
| abstract_inverted_index.(DDA) | 84 |
| abstract_inverted_index.aimed | 130 |
| abstract_inverted_index.based | 61 |
| abstract_inverted_index.dense | 81, 141 |
| abstract_inverted_index.fully | 93 |
| abstract_inverted_index.level | 36, 137 |
| abstract_inverted_index.maps. | 160 |
| abstract_inverted_index.mode. | 47 |
| abstract_inverted_index.model | 171 |
| abstract_inverted_index.modes | 33, 151 |
| abstract_inverted_index.order | 49 |
| abstract_inverted_index.solve | 51 |
| abstract_inverted_index.where | 107 |
| abstract_inverted_index.which | 65 |
| abstract_inverted_index.(RCIE) | 77 |
| abstract_inverted_index.fields | 103 |
| abstract_inverted_index.groups | 109 |
| abstract_inverted_index.module | 78, 89, 129 |
| abstract_inverted_index.namely | 71 |
| abstract_inverted_index.object | 15, 20 |
| abstract_inverted_index.obtain | 144 |
| abstract_inverted_index.single | 45 |
| abstract_inverted_index.against | 174 |
| abstract_inverted_index.between | 135 |
| abstract_inverted_index.context | 28, 74, 95 |
| abstract_inverted_index.dilated | 115 |
| abstract_inverted_index.enhance | 132 |
| abstract_inverted_index.extract | 94, 120 |
| abstract_inverted_index.feature | 146 |
| abstract_inverted_index.fields. | 125 |
| abstract_inverted_index.issues, | 54 |
| abstract_inverted_index.limited | 31 |
| abstract_inverted_index.methods | 22 |
| abstract_inverted_index.module. | 85 |
| abstract_inverted_index.network | 60 |
| abstract_inverted_index.salient | 14, 19 |
| abstract_inverted_index.Finally, | 148 |
| abstract_inverted_index.Firstly, | 86 |
| abstract_inverted_index.However, | 17 |
| abstract_inverted_index.composed | 110 |
| abstract_inverted_index.consists | 66 |
| abstract_inverted_index.datasets | 166 |
| abstract_inverted_index.designed | 91 |
| abstract_inverted_index.features | 99, 121, 138 |
| abstract_inverted_index.generate | 158 |
| abstract_inverted_index.methods. | 177 |
| abstract_inverted_index.modules, | 70 |
| abstract_inverted_index.performs | 172 |
| abstract_inverted_index.proposed | 56, 170 |
| abstract_inverted_index.residual | 73, 105 |
| abstract_inverted_index.saliency | 159 |
| abstract_inverted_index.Extensive | 161 |
| abstract_inverted_index.Secondly, | 126 |
| abstract_inverted_index.benchmark | 165 |
| abstract_inverted_index.detection | 21 |
| abstract_inverted_index.different | 35, 101, 123, 136 |
| abstract_inverted_index.favorably | 173 |
| abstract_inverted_index.features, | 37, 64 |
| abstract_inverted_index.learning, | 5 |
| abstract_inverted_index.potential | 39 |
| abstract_inverted_index.receptive | 102, 124 |
| abstract_inverted_index.asymmetric | 112 |
| abstract_inverted_index.connecting | 98 |
| abstract_inverted_index.detection. | 16 |
| abstract_inverted_index.extraction | 76 |
| abstract_inverted_index.leveraging | 140 |
| abstract_inverted_index.aggregation | 59, 83, 156 |
| abstract_inverted_index.connections | 142 |
| abstract_inverted_index.convolution | 113, 116 |
| abstract_inverted_index.development | 2 |
| abstract_inverted_index.dual-stream | 58, 82, 155 |
| abstract_inverted_index.experiments | 162 |
| abstract_inverted_index.extraction, | 30 |
| abstract_inverted_index.information | 29, 40, 75, 96 |
| abstract_inverted_index.interaction | 32, 46, 150 |
| abstract_inverted_index.multi-scale | 63 |
| abstract_inverted_index.significant | 6 |
| abstract_inverted_index.connections, | 106 |
| abstract_inverted_index.high-quality | 145 |
| abstract_inverted_index.improvements | 7 |
| abstract_inverted_index.information. | 147 |
| abstract_inverted_index.insufficient | 27 |
| abstract_inverted_index.limitations, | 24 |
| abstract_inverted_index.convolutional | 108 |
| abstract_inverted_index.optimizations | 9 |
| abstract_inverted_index.relationships | 134 |
| abstract_inverted_index.aforementioned | 53 |
| abstract_inverted_index.state-of-the-art | 176 |
| cited_by_percentile_year | |
| corresponding_author_ids | https://openalex.org/A5033351506 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 4 |
| corresponding_institution_ids | https://openalex.org/I184681353 |
| citation_normalized_percentile.value | 0.07824332 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |