MG-LLaVA: Towards Multi-Granularity Visual Instruction Tuning Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2406.17770
Multi-modal large language models (MLLMs) have made significant strides in various visual understanding tasks. However, the majority of these models are constrained to process low-resolution images, which limits their effectiveness in perception tasks that necessitate detailed visual information. In our study, we present MG-LLaVA, an innovative MLLM that enhances the model's visual processing capabilities by incorporating a multi-granularity vision flow, which includes low-resolution, high-resolution, and object-centric features. We propose the integration of an additional high-resolution visual encoder to capture fine-grained details, which are then fused with base visual features through a Conv-Gate fusion network. To further refine the model's object recognition abilities, we incorporate object-level features derived from bounding boxes identified by offline detectors. Being trained solely on publicly available multimodal data through instruction tuning, MG-LLaVA demonstrates exceptional perception skills. We instantiate MG-LLaVA with a wide variety of language encoders, ranging from 3.8B to 34B, to evaluate the model's performance comprehensively. Extensive evaluations across multiple benchmarks demonstrate that MG-LLaVA outperforms existing MLLMs of comparable parameter sizes, showcasing its remarkable efficacy. The code will be available at https://github.com/PhoenixZ810/MG-LLaVA.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2406.17770
- https://arxiv.org/pdf/2406.17770
- OA Status
- green
- Cited By
- 1
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4400065285
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4400065285Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2406.17770Digital Object Identifier
- Title
-
MG-LLaVA: Towards Multi-Granularity Visual Instruction TuningWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-06-25Full publication date if available
- Authors
-
Xiangyu Zhao, Xiangtai Li, Haodong Duan, Haian Huang, Yining Li, Kai Chen, Hua YangList of authors in order
- Landing page
-
https://arxiv.org/abs/2406.17770Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2406.17770Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2406.17770Direct OA link when available
- Concepts
-
Granularity, Computer science, Artificial intelligence, Programming languageTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4400065285 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2406.17770 |
| ids.doi | https://doi.org/10.48550/arxiv.2406.17770 |
| ids.openalex | https://openalex.org/W4400065285 |
| fwci | |
| type | preprint |
| title | MG-LLaVA: Towards Multi-Granularity Visual Instruction Tuning |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11439 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9182999730110168 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Video Analysis and Summarization |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C177774035 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8803043365478516 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1246948 |
| concepts[0].display_name | Granularity |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.6408911347389221 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C154945302 |
| concepts[2].level | 1 |
| concepts[2].score | 0.3327629566192627 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[2].display_name | Artificial intelligence |
| concepts[3].id | https://openalex.org/C199360897 |
| concepts[3].level | 1 |
| concepts[3].score | 0.23667901754379272 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[3].display_name | Programming language |
| keywords[0].id | https://openalex.org/keywords/granularity |
| keywords[0].score | 0.8803043365478516 |
| keywords[0].display_name | Granularity |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.6408911347389221 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[2].score | 0.3327629566192627 |
| keywords[2].display_name | Artificial intelligence |
| keywords[3].id | https://openalex.org/keywords/programming-language |
| keywords[3].score | 0.23667901754379272 |
| keywords[3].display_name | Programming language |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2406.17770 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2406.17770 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2406.17770 |
| locations[1].id | doi:10.48550/arxiv.2406.17770 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2406.17770 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5100645854 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-2926-4416 |
| authorships[0].author.display_name | Xiangyu Zhao |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Zhao, Xiangyu |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5089900108 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-0550-8247 |
| authorships[1].author.display_name | Xiangtai Li |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Li, Xiangtai |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5028468431 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-3052-4177 |
| authorships[2].author.display_name | Haodong Duan |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Duan, Haodong |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5058287590 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Haian Huang |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Huang, Haian |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5101546250 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-4761-2293 |
| authorships[4].author.display_name | Yining Li |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Li, Yining |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5048500768 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-3930-8294 |
| authorships[5].author.display_name | Kai Chen |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Chen, Kai |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5113387106 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-6229-8944 |
| authorships[6].author.display_name | Hua Yang |
| authorships[6].author_position | last |
| authorships[6].raw_author_name | Yang, Hua |
| authorships[6].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2406.17770 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | MG-LLaVA: Towards Multi-Granularity Visual Instruction Tuning |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T11439 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9182999730110168 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Video Analysis and Summarization |
| related_works | https://openalex.org/W4391375266, https://openalex.org/W2748952813, https://openalex.org/W2931688134, https://openalex.org/W2377919138, https://openalex.org/W2378857091, https://openalex.org/W2999756192, https://openalex.org/W103652678, https://openalex.org/W4226090359, https://openalex.org/W2059697060, https://openalex.org/W936373746 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2406.17770 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2406.17770 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2406.17770 |
| primary_location.id | pmh:oai:arXiv.org:2406.17770 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2406.17770 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2406.17770 |
| publication_date | 2024-06-25 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 56, 90, 134 |
| abstract_inverted_index.In | 38 |
| abstract_inverted_index.To | 94 |
| abstract_inverted_index.We | 67, 130 |
| abstract_inverted_index.an | 44, 72 |
| abstract_inverted_index.at | 175 |
| abstract_inverted_index.be | 173 |
| abstract_inverted_index.by | 54, 111 |
| abstract_inverted_index.in | 9, 30 |
| abstract_inverted_index.of | 17, 71, 137, 162 |
| abstract_inverted_index.on | 117 |
| abstract_inverted_index.to | 22, 77, 143, 145 |
| abstract_inverted_index.we | 41, 102 |
| abstract_inverted_index.The | 170 |
| abstract_inverted_index.and | 64 |
| abstract_inverted_index.are | 20, 82 |
| abstract_inverted_index.its | 167 |
| abstract_inverted_index.our | 39 |
| abstract_inverted_index.the | 15, 49, 69, 97, 147 |
| abstract_inverted_index.3.8B | 142 |
| abstract_inverted_index.34B, | 144 |
| abstract_inverted_index.MLLM | 46 |
| abstract_inverted_index.base | 86 |
| abstract_inverted_index.code | 171 |
| abstract_inverted_index.data | 121 |
| abstract_inverted_index.from | 107, 141 |
| abstract_inverted_index.have | 5 |
| abstract_inverted_index.made | 6 |
| abstract_inverted_index.that | 33, 47, 157 |
| abstract_inverted_index.then | 83 |
| abstract_inverted_index.wide | 135 |
| abstract_inverted_index.will | 172 |
| abstract_inverted_index.with | 85, 133 |
| abstract_inverted_index.Being | 114 |
| abstract_inverted_index.MLLMs | 161 |
| abstract_inverted_index.boxes | 109 |
| abstract_inverted_index.flow, | 59 |
| abstract_inverted_index.fused | 84 |
| abstract_inverted_index.large | 1 |
| abstract_inverted_index.tasks | 32 |
| abstract_inverted_index.their | 28 |
| abstract_inverted_index.these | 18 |
| abstract_inverted_index.which | 26, 60, 81 |
| abstract_inverted_index.across | 153 |
| abstract_inverted_index.fusion | 92 |
| abstract_inverted_index.limits | 27 |
| abstract_inverted_index.models | 3, 19 |
| abstract_inverted_index.object | 99 |
| abstract_inverted_index.refine | 96 |
| abstract_inverted_index.sizes, | 165 |
| abstract_inverted_index.solely | 116 |
| abstract_inverted_index.study, | 40 |
| abstract_inverted_index.tasks. | 13 |
| abstract_inverted_index.vision | 58 |
| abstract_inverted_index.visual | 11, 36, 51, 75, 87 |
| abstract_inverted_index.(MLLMs) | 4 |
| abstract_inverted_index.capture | 78 |
| abstract_inverted_index.derived | 106 |
| abstract_inverted_index.encoder | 76 |
| abstract_inverted_index.further | 95 |
| abstract_inverted_index.images, | 25 |
| abstract_inverted_index.model's | 50, 98, 148 |
| abstract_inverted_index.offline | 112 |
| abstract_inverted_index.present | 42 |
| abstract_inverted_index.process | 23 |
| abstract_inverted_index.propose | 68 |
| abstract_inverted_index.ranging | 140 |
| abstract_inverted_index.skills. | 129 |
| abstract_inverted_index.strides | 8 |
| abstract_inverted_index.through | 89, 122 |
| abstract_inverted_index.trained | 115 |
| abstract_inverted_index.tuning, | 124 |
| abstract_inverted_index.variety | 136 |
| abstract_inverted_index.various | 10 |
| abstract_inverted_index.However, | 14 |
| abstract_inverted_index.MG-LLaVA | 125, 132, 158 |
| abstract_inverted_index.bounding | 108 |
| abstract_inverted_index.detailed | 35 |
| abstract_inverted_index.details, | 80 |
| abstract_inverted_index.enhances | 48 |
| abstract_inverted_index.evaluate | 146 |
| abstract_inverted_index.existing | 160 |
| abstract_inverted_index.features | 88, 105 |
| abstract_inverted_index.includes | 61 |
| abstract_inverted_index.language | 2, 138 |
| abstract_inverted_index.majority | 16 |
| abstract_inverted_index.multiple | 154 |
| abstract_inverted_index.network. | 93 |
| abstract_inverted_index.publicly | 118 |
| abstract_inverted_index.Conv-Gate | 91 |
| abstract_inverted_index.Extensive | 151 |
| abstract_inverted_index.MG-LLaVA, | 43 |
| abstract_inverted_index.available | 119, 174 |
| abstract_inverted_index.efficacy. | 169 |
| abstract_inverted_index.encoders, | 139 |
| abstract_inverted_index.features. | 66 |
| abstract_inverted_index.parameter | 164 |
| abstract_inverted_index.abilities, | 101 |
| abstract_inverted_index.additional | 73 |
| abstract_inverted_index.benchmarks | 155 |
| abstract_inverted_index.comparable | 163 |
| abstract_inverted_index.detectors. | 113 |
| abstract_inverted_index.identified | 110 |
| abstract_inverted_index.innovative | 45 |
| abstract_inverted_index.multimodal | 120 |
| abstract_inverted_index.perception | 31, 128 |
| abstract_inverted_index.processing | 52 |
| abstract_inverted_index.remarkable | 168 |
| abstract_inverted_index.showcasing | 166 |
| abstract_inverted_index.Multi-modal | 0 |
| abstract_inverted_index.constrained | 21 |
| abstract_inverted_index.demonstrate | 156 |
| abstract_inverted_index.evaluations | 152 |
| abstract_inverted_index.exceptional | 127 |
| abstract_inverted_index.incorporate | 103 |
| abstract_inverted_index.instantiate | 131 |
| abstract_inverted_index.instruction | 123 |
| abstract_inverted_index.integration | 70 |
| abstract_inverted_index.necessitate | 34 |
| abstract_inverted_index.outperforms | 159 |
| abstract_inverted_index.performance | 149 |
| abstract_inverted_index.recognition | 100 |
| abstract_inverted_index.significant | 7 |
| abstract_inverted_index.capabilities | 53 |
| abstract_inverted_index.demonstrates | 126 |
| abstract_inverted_index.fine-grained | 79 |
| abstract_inverted_index.information. | 37 |
| abstract_inverted_index.object-level | 104 |
| abstract_inverted_index.effectiveness | 29 |
| abstract_inverted_index.incorporating | 55 |
| abstract_inverted_index.understanding | 12 |
| abstract_inverted_index.low-resolution | 24 |
| abstract_inverted_index.object-centric | 65 |
| abstract_inverted_index.high-resolution | 74 |
| abstract_inverted_index.low-resolution, | 62 |
| abstract_inverted_index.comprehensively. | 150 |
| abstract_inverted_index.high-resolution, | 63 |
| abstract_inverted_index.multi-granularity | 57 |
| abstract_inverted_index.https://github.com/PhoenixZ810/MG-LLaVA. | 176 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 7 |
| citation_normalized_percentile |