MIC: Masked Image Consistency for Context-Enhanced Domain Adaptation Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2212.01322
In unsupervised domain adaptation (UDA), a model trained on source data (e.g. synthetic) is adapted to target data (e.g. real-world) without access to target annotation. Most previous UDA methods struggle with classes that have a similar visual appearance on the target domain as no ground truth is available to learn the slight appearance differences. To address this problem, we propose a Masked Image Consistency (MIC) module to enhance UDA by learning spatial context relations of the target domain as additional clues for robust visual recognition. MIC enforces the consistency between predictions of masked target images, where random patches are withheld, and pseudo-labels that are generated based on the complete image by an exponential moving average teacher. To minimize the consistency loss, the network has to learn to infer the predictions of the masked regions from their context. Due to its simple and universal concept, MIC can be integrated into various UDA methods across different visual recognition tasks such as image classification, semantic segmentation, and object detection. MIC significantly improves the state-of-the-art performance across the different recognition tasks for synthetic-to-real, day-to-nighttime, and clear-to-adverse-weather UDA. For instance, MIC achieves an unprecedented UDA performance of 75.9 mIoU and 92.8% on GTA-to-Cityscapes and VisDA-2017, respectively, which corresponds to an improvement of +2.1 and +3.0 percent points over the previous state of the art. The implementation is available at https://github.com/lhoyer/MIC.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2212.01322
- https://arxiv.org/pdf/2212.01322
- OA Status
- green
- Cited By
- 9
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4310746793
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4310746793Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2212.01322Digital Object Identifier
- Title
-
MIC: Masked Image Consistency for Context-Enhanced Domain AdaptationWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-12-02Full publication date if available
- Authors
-
Lukas Hoyer, Dengxin Dai, Haoran Wang, Luc Van GoolList of authors in order
- Landing page
-
https://arxiv.org/abs/2212.01322Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2212.01322Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2212.01322Direct OA link when available
- Concepts
-
Computer science, Consistency (knowledge bases), Context (archaeology), Artificial intelligence, Segmentation, Ground truth, Adaptation (eye), Domain (mathematical analysis), Pattern recognition (psychology), Annotation, Image (mathematics), Object (grammar), Computer vision, Mathematics, Geography, Archaeology, Physics, Optics, Mathematical analysisTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
9Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 2, 2024: 5, 2023: 2Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4310746793 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2212.01322 |
| ids.doi | https://doi.org/10.48550/arxiv.2212.01322 |
| ids.openalex | https://openalex.org/W4310746793 |
| fwci | |
| type | preprint |
| title | MIC: Masked Image Consistency for Context-Enhanced Domain Adaptation |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11307 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9977999925613403 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Domain Adaptation and Few-Shot Learning |
| topics[1].id | https://openalex.org/T11714 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9649999737739563 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1707 |
| topics[1].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[1].display_name | Multimodal Machine Learning Applications |
| topics[2].id | https://openalex.org/T11775 |
| topics[2].field.id | https://openalex.org/fields/27 |
| topics[2].field.display_name | Medicine |
| topics[2].score | 0.9625999927520752 |
| topics[2].domain.id | https://openalex.org/domains/4 |
| topics[2].domain.display_name | Health Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2741 |
| topics[2].subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| topics[2].display_name | COVID-19 diagnosis using AI |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.6979488134384155 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C2776436953 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6823164224624634 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q5163215 |
| concepts[1].display_name | Consistency (knowledge bases) |
| concepts[2].id | https://openalex.org/C2779343474 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6361765265464783 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q3109175 |
| concepts[2].display_name | Context (archaeology) |
| concepts[3].id | https://openalex.org/C154945302 |
| concepts[3].level | 1 |
| concepts[3].score | 0.6351671814918518 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[3].display_name | Artificial intelligence |
| concepts[4].id | https://openalex.org/C89600930 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5752918720245361 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q1423946 |
| concepts[4].display_name | Segmentation |
| concepts[5].id | https://openalex.org/C146849305 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5595511794090271 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q370766 |
| concepts[5].display_name | Ground truth |
| concepts[6].id | https://openalex.org/C139807058 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5072466731071472 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q352374 |
| concepts[6].display_name | Adaptation (eye) |
| concepts[7].id | https://openalex.org/C36503486 |
| concepts[7].level | 2 |
| concepts[7].score | 0.5036720633506775 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q11235244 |
| concepts[7].display_name | Domain (mathematical analysis) |
| concepts[8].id | https://openalex.org/C153180895 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4520041346549988 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[8].display_name | Pattern recognition (psychology) |
| concepts[9].id | https://openalex.org/C2776321320 |
| concepts[9].level | 2 |
| concepts[9].score | 0.44225913286209106 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q857525 |
| concepts[9].display_name | Annotation |
| concepts[10].id | https://openalex.org/C115961682 |
| concepts[10].level | 2 |
| concepts[10].score | 0.4391438364982605 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q860623 |
| concepts[10].display_name | Image (mathematics) |
| concepts[11].id | https://openalex.org/C2781238097 |
| concepts[11].level | 2 |
| concepts[11].score | 0.41289421916007996 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q175026 |
| concepts[11].display_name | Object (grammar) |
| concepts[12].id | https://openalex.org/C31972630 |
| concepts[12].level | 1 |
| concepts[12].score | 0.3899593651294708 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[12].display_name | Computer vision |
| concepts[13].id | https://openalex.org/C33923547 |
| concepts[13].level | 0 |
| concepts[13].score | 0.18549245595932007 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[13].display_name | Mathematics |
| concepts[14].id | https://openalex.org/C205649164 |
| concepts[14].level | 0 |
| concepts[14].score | 0.09603026509284973 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[14].display_name | Geography |
| concepts[15].id | https://openalex.org/C166957645 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q23498 |
| concepts[15].display_name | Archaeology |
| concepts[16].id | https://openalex.org/C121332964 |
| concepts[16].level | 0 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[16].display_name | Physics |
| concepts[17].id | https://openalex.org/C120665830 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q14620 |
| concepts[17].display_name | Optics |
| concepts[18].id | https://openalex.org/C134306372 |
| concepts[18].level | 1 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q7754 |
| concepts[18].display_name | Mathematical analysis |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.6979488134384155 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/consistency |
| keywords[1].score | 0.6823164224624634 |
| keywords[1].display_name | Consistency (knowledge bases) |
| keywords[2].id | https://openalex.org/keywords/context |
| keywords[2].score | 0.6361765265464783 |
| keywords[2].display_name | Context (archaeology) |
| keywords[3].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[3].score | 0.6351671814918518 |
| keywords[3].display_name | Artificial intelligence |
| keywords[4].id | https://openalex.org/keywords/segmentation |
| keywords[4].score | 0.5752918720245361 |
| keywords[4].display_name | Segmentation |
| keywords[5].id | https://openalex.org/keywords/ground-truth |
| keywords[5].score | 0.5595511794090271 |
| keywords[5].display_name | Ground truth |
| keywords[6].id | https://openalex.org/keywords/adaptation |
| keywords[6].score | 0.5072466731071472 |
| keywords[6].display_name | Adaptation (eye) |
| keywords[7].id | https://openalex.org/keywords/domain |
| keywords[7].score | 0.5036720633506775 |
| keywords[7].display_name | Domain (mathematical analysis) |
| keywords[8].id | https://openalex.org/keywords/pattern-recognition |
| keywords[8].score | 0.4520041346549988 |
| keywords[8].display_name | Pattern recognition (psychology) |
| keywords[9].id | https://openalex.org/keywords/annotation |
| keywords[9].score | 0.44225913286209106 |
| keywords[9].display_name | Annotation |
| keywords[10].id | https://openalex.org/keywords/image |
| keywords[10].score | 0.4391438364982605 |
| keywords[10].display_name | Image (mathematics) |
| keywords[11].id | https://openalex.org/keywords/object |
| keywords[11].score | 0.41289421916007996 |
| keywords[11].display_name | Object (grammar) |
| keywords[12].id | https://openalex.org/keywords/computer-vision |
| keywords[12].score | 0.3899593651294708 |
| keywords[12].display_name | Computer vision |
| keywords[13].id | https://openalex.org/keywords/mathematics |
| keywords[13].score | 0.18549245595932007 |
| keywords[13].display_name | Mathematics |
| keywords[14].id | https://openalex.org/keywords/geography |
| keywords[14].score | 0.09603026509284973 |
| keywords[14].display_name | Geography |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2212.01322 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | cc-by-nc-sa |
| locations[0].pdf_url | https://arxiv.org/pdf/2212.01322 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc-sa |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2212.01322 |
| locations[1].id | doi:10.48550/arxiv.2212.01322 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2212.01322 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5053328232 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-7391-0676 |
| authorships[0].author.display_name | Lukas Hoyer |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Hoyer, Lukas |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5078838951 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-5440-9678 |
| authorships[1].author.display_name | Dengxin Dai |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Dai, Dengxin |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5100324808 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-6177-9706 |
| authorships[2].author.display_name | Haoran Wang |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Wang, Haoran |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5001254143 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-3445-5711 |
| authorships[3].author.display_name | Luc Van Gool |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Van Gool, Luc |
| authorships[3].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2212.01322 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | MIC: Masked Image Consistency for Context-Enhanced Domain Adaptation |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T11307 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9977999925613403 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Domain Adaptation and Few-Shot Learning |
| related_works | https://openalex.org/W2361861616, https://openalex.org/W2263699433, https://openalex.org/W2377979023, https://openalex.org/W2218034408, https://openalex.org/W2392921965, https://openalex.org/W2358755282, https://openalex.org/W2625833328, https://openalex.org/W1533177136, https://openalex.org/W4380994516, https://openalex.org/W1997160662 |
| cited_by_count | 9 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 2 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 5 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 2 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2212.01322 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | cc-by-nc-sa |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2212.01322 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc-sa |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2212.01322 |
| primary_location.id | pmh:oai:arXiv.org:2212.01322 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | cc-by-nc-sa |
| primary_location.pdf_url | https://arxiv.org/pdf/2212.01322 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc-sa |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2212.01322 |
| publication_date | 2022-12-02 |
| publication_year | 2022 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 5, 34, 60 |
| abstract_inverted_index.In | 0 |
| abstract_inverted_index.To | 54, 116 |
| abstract_inverted_index.an | 111, 187, 204 |
| abstract_inverted_index.as | 42, 78, 158 |
| abstract_inverted_index.at | 223 |
| abstract_inverted_index.be | 146 |
| abstract_inverted_index.by | 69, 110 |
| abstract_inverted_index.is | 13, 46, 221 |
| abstract_inverted_index.no | 43 |
| abstract_inverted_index.of | 74, 91, 130, 191, 206, 216 |
| abstract_inverted_index.on | 8, 38, 106, 196 |
| abstract_inverted_index.to | 15, 22, 48, 66, 124, 126, 138, 203 |
| abstract_inverted_index.we | 58 |
| abstract_inverted_index.Due | 137 |
| abstract_inverted_index.For | 183 |
| abstract_inverted_index.MIC | 85, 144, 166, 185 |
| abstract_inverted_index.The | 219 |
| abstract_inverted_index.UDA | 27, 68, 150, 189 |
| abstract_inverted_index.and | 100, 141, 163, 180, 194, 198, 208 |
| abstract_inverted_index.are | 98, 103 |
| abstract_inverted_index.can | 145 |
| abstract_inverted_index.for | 81, 177 |
| abstract_inverted_index.has | 123 |
| abstract_inverted_index.its | 139 |
| abstract_inverted_index.the | 39, 50, 75, 87, 107, 118, 121, 128, 131, 169, 173, 213, 217 |
| abstract_inverted_index.+2.1 | 207 |
| abstract_inverted_index.+3.0 | 209 |
| abstract_inverted_index.75.9 | 192 |
| abstract_inverted_index.Most | 25 |
| abstract_inverted_index.UDA. | 182 |
| abstract_inverted_index.art. | 218 |
| abstract_inverted_index.data | 10, 17 |
| abstract_inverted_index.from | 134 |
| abstract_inverted_index.have | 33 |
| abstract_inverted_index.into | 148 |
| abstract_inverted_index.mIoU | 193 |
| abstract_inverted_index.over | 212 |
| abstract_inverted_index.such | 157 |
| abstract_inverted_index.that | 32, 102 |
| abstract_inverted_index.this | 56 |
| abstract_inverted_index.with | 30 |
| abstract_inverted_index.(MIC) | 64 |
| abstract_inverted_index.(e.g. | 11, 18 |
| abstract_inverted_index.92.8% | 195 |
| abstract_inverted_index.Image | 62 |
| abstract_inverted_index.based | 105 |
| abstract_inverted_index.clues | 80 |
| abstract_inverted_index.image | 109, 159 |
| abstract_inverted_index.infer | 127 |
| abstract_inverted_index.learn | 49, 125 |
| abstract_inverted_index.loss, | 120 |
| abstract_inverted_index.model | 6 |
| abstract_inverted_index.state | 215 |
| abstract_inverted_index.tasks | 156, 176 |
| abstract_inverted_index.their | 135 |
| abstract_inverted_index.truth | 45 |
| abstract_inverted_index.where | 95 |
| abstract_inverted_index.which | 201 |
| abstract_inverted_index.(UDA), | 4 |
| abstract_inverted_index.Masked | 61 |
| abstract_inverted_index.access | 21 |
| abstract_inverted_index.across | 152, 172 |
| abstract_inverted_index.domain | 2, 41, 77 |
| abstract_inverted_index.ground | 44 |
| abstract_inverted_index.masked | 92, 132 |
| abstract_inverted_index.module | 65 |
| abstract_inverted_index.moving | 113 |
| abstract_inverted_index.object | 164 |
| abstract_inverted_index.points | 211 |
| abstract_inverted_index.random | 96 |
| abstract_inverted_index.robust | 82 |
| abstract_inverted_index.simple | 140 |
| abstract_inverted_index.slight | 51 |
| abstract_inverted_index.source | 9 |
| abstract_inverted_index.target | 16, 23, 40, 76, 93 |
| abstract_inverted_index.visual | 36, 83, 154 |
| abstract_inverted_index.adapted | 14 |
| abstract_inverted_index.address | 55 |
| abstract_inverted_index.average | 114 |
| abstract_inverted_index.between | 89 |
| abstract_inverted_index.classes | 31 |
| abstract_inverted_index.context | 72 |
| abstract_inverted_index.enhance | 67 |
| abstract_inverted_index.images, | 94 |
| abstract_inverted_index.methods | 28, 151 |
| abstract_inverted_index.network | 122 |
| abstract_inverted_index.patches | 97 |
| abstract_inverted_index.percent | 210 |
| abstract_inverted_index.propose | 59 |
| abstract_inverted_index.regions | 133 |
| abstract_inverted_index.similar | 35 |
| abstract_inverted_index.spatial | 71 |
| abstract_inverted_index.trained | 7 |
| abstract_inverted_index.various | 149 |
| abstract_inverted_index.without | 20 |
| abstract_inverted_index.achieves | 186 |
| abstract_inverted_index.complete | 108 |
| abstract_inverted_index.concept, | 143 |
| abstract_inverted_index.context. | 136 |
| abstract_inverted_index.enforces | 86 |
| abstract_inverted_index.improves | 168 |
| abstract_inverted_index.learning | 70 |
| abstract_inverted_index.minimize | 117 |
| abstract_inverted_index.previous | 26, 214 |
| abstract_inverted_index.problem, | 57 |
| abstract_inverted_index.semantic | 161 |
| abstract_inverted_index.struggle | 29 |
| abstract_inverted_index.teacher. | 115 |
| abstract_inverted_index.available | 47, 222 |
| abstract_inverted_index.different | 153, 174 |
| abstract_inverted_index.generated | 104 |
| abstract_inverted_index.instance, | 184 |
| abstract_inverted_index.relations | 73 |
| abstract_inverted_index.universal | 142 |
| abstract_inverted_index.withheld, | 99 |
| abstract_inverted_index.adaptation | 3 |
| abstract_inverted_index.additional | 79 |
| abstract_inverted_index.appearance | 37, 52 |
| abstract_inverted_index.detection. | 165 |
| abstract_inverted_index.integrated | 147 |
| abstract_inverted_index.synthetic) | 12 |
| abstract_inverted_index.Consistency | 63 |
| abstract_inverted_index.VisDA-2017, | 199 |
| abstract_inverted_index.annotation. | 24 |
| abstract_inverted_index.consistency | 88, 119 |
| abstract_inverted_index.corresponds | 202 |
| abstract_inverted_index.exponential | 112 |
| abstract_inverted_index.improvement | 205 |
| abstract_inverted_index.performance | 171, 190 |
| abstract_inverted_index.predictions | 90, 129 |
| abstract_inverted_index.real-world) | 19 |
| abstract_inverted_index.recognition | 155, 175 |
| abstract_inverted_index.differences. | 53 |
| abstract_inverted_index.recognition. | 84 |
| abstract_inverted_index.unsupervised | 1 |
| abstract_inverted_index.pseudo-labels | 101 |
| abstract_inverted_index.respectively, | 200 |
| abstract_inverted_index.segmentation, | 162 |
| abstract_inverted_index.significantly | 167 |
| abstract_inverted_index.unprecedented | 188 |
| abstract_inverted_index.implementation | 220 |
| abstract_inverted_index.classification, | 160 |
| abstract_inverted_index.state-of-the-art | 170 |
| abstract_inverted_index.GTA-to-Cityscapes | 197 |
| abstract_inverted_index.day-to-nighttime, | 179 |
| abstract_inverted_index.synthetic-to-real, | 178 |
| abstract_inverted_index.clear-to-adverse-weather | 181 |
| abstract_inverted_index.https://github.com/lhoyer/MIC. | 224 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile |