MIGA: A Unified Multi-Task Generation Framework for Conversational Text-to-SQL Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.1609/aaai.v37i11.26504
Conversational text-to-SQL is designed to translate multi-turn natural language questions into their corresponding SQL queries. Most advanced conversational text-to-SQL methods are incompatible with generative pre-trained language models (PLMs), such as T5. In this paper, we present a two-stage unified MultI-task Generation frAmework (MIGA) that leverages PLMs’ ability to tackle conversational text-to-SQL. In the pre-training stage, MIGA first decomposes the main task into several related sub-tasks and then unifies them into the same sequence-to-sequence (Seq2Seq) paradigm with task-specific natural language prompts to boost the main task from multi-task training. Later in the fine-tuning stage, we propose four SQL perturbations to alleviate the error propagation problem. MIGA tends to achieve state-of-the-art performance on two benchmarks (SparC and CoSQL). We also provide extensive analyses and discussions to shed light on some new perspectives for conversational text-to-SQL.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1609/aaai.v37i11.26504
- https://ojs.aaai.org/index.php/AAAI/article/download/26504/26276
- OA Status
- diamond
- Cited By
- 8
- References
- 59
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4382202648
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4382202648Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1609/aaai.v37i11.26504Digital Object Identifier
- Title
-
MIGA: A Unified Multi-Task Generation Framework for Conversational Text-to-SQLWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-06-26Full publication date if available
- Authors
-
Yingwen Fu, Wenjie Ou, Yu Zhou, Yue LinList of authors in order
- Landing page
-
https://doi.org/10.1609/aaai.v37i11.26504Publisher landing page
- PDF URL
-
https://ojs.aaai.org/index.php/AAAI/article/download/26504/26276Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://ojs.aaai.org/index.php/AAAI/article/download/26504/26276Direct OA link when available
- Concepts
-
Computer science, SQL, Task (project management), Natural language processing, Artificial intelligence, Natural language, Programming language, Management, EconomicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
8Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 5, 2024: 2, 2023: 1Per-year citation counts (last 5 years)
- References (count)
-
59Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4382202648 |
|---|---|
| doi | https://doi.org/10.1609/aaai.v37i11.26504 |
| ids.doi | https://doi.org/10.1609/aaai.v37i11.26504 |
| ids.openalex | https://openalex.org/W4382202648 |
| fwci | 1.15366714 |
| type | article |
| title | MIGA: A Unified Multi-Task Generation Framework for Conversational Text-to-SQL |
| biblio.issue | 11 |
| biblio.volume | 37 |
| biblio.last_page | 12798 |
| biblio.first_page | 12790 |
| topics[0].id | https://openalex.org/T10028 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9986000061035156 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Topic Modeling |
| topics[1].id | https://openalex.org/T10181 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9984999895095825 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Natural Language Processing Techniques |
| topics[2].id | https://openalex.org/T12031 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9905999898910522 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Speech and dialogue systems |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.8703634738922119 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C510870499 |
| concepts[1].level | 2 |
| concepts[1].score | 0.82501220703125 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q47607 |
| concepts[1].display_name | SQL |
| concepts[2].id | https://openalex.org/C2780451532 |
| concepts[2].level | 2 |
| concepts[2].score | 0.781097412109375 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q759676 |
| concepts[2].display_name | Task (project management) |
| concepts[3].id | https://openalex.org/C204321447 |
| concepts[3].level | 1 |
| concepts[3].score | 0.5217753052711487 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q30642 |
| concepts[3].display_name | Natural language processing |
| concepts[4].id | https://openalex.org/C154945302 |
| concepts[4].level | 1 |
| concepts[4].score | 0.509432852268219 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[4].display_name | Artificial intelligence |
| concepts[5].id | https://openalex.org/C195324797 |
| concepts[5].level | 2 |
| concepts[5].score | 0.45056453347206116 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q33742 |
| concepts[5].display_name | Natural language |
| concepts[6].id | https://openalex.org/C199360897 |
| concepts[6].level | 1 |
| concepts[6].score | 0.35333168506622314 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[6].display_name | Programming language |
| concepts[7].id | https://openalex.org/C187736073 |
| concepts[7].level | 1 |
| concepts[7].score | 0.0 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q2920921 |
| concepts[7].display_name | Management |
| concepts[8].id | https://openalex.org/C162324750 |
| concepts[8].level | 0 |
| concepts[8].score | 0.0 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q8134 |
| concepts[8].display_name | Economics |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.8703634738922119 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/sql |
| keywords[1].score | 0.82501220703125 |
| keywords[1].display_name | SQL |
| keywords[2].id | https://openalex.org/keywords/task |
| keywords[2].score | 0.781097412109375 |
| keywords[2].display_name | Task (project management) |
| keywords[3].id | https://openalex.org/keywords/natural-language-processing |
| keywords[3].score | 0.5217753052711487 |
| keywords[3].display_name | Natural language processing |
| keywords[4].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[4].score | 0.509432852268219 |
| keywords[4].display_name | Artificial intelligence |
| keywords[5].id | https://openalex.org/keywords/natural-language |
| keywords[5].score | 0.45056453347206116 |
| keywords[5].display_name | Natural language |
| keywords[6].id | https://openalex.org/keywords/programming-language |
| keywords[6].score | 0.35333168506622314 |
| keywords[6].display_name | Programming language |
| language | en |
| locations[0].id | doi:10.1609/aaai.v37i11.26504 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210191458 |
| locations[0].source.issn | 2159-5399, 2374-3468 |
| locations[0].source.type | conference |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2159-5399 |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Proceedings of the AAAI Conference on Artificial Intelligence |
| locations[0].source.host_organization | https://openalex.org/P4310320058 |
| locations[0].source.host_organization_name | Association for the Advancement of Artificial Intelligence |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320058 |
| locations[0].source.host_organization_lineage_names | Association for the Advancement of Artificial Intelligence |
| locations[0].license | |
| locations[0].pdf_url | https://ojs.aaai.org/index.php/AAAI/article/download/26504/26276 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Proceedings of the AAAI Conference on Artificial Intelligence |
| locations[0].landing_page_url | https://doi.org/10.1609/aaai.v37i11.26504 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5014108621 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-6974-3468 |
| authorships[0].author.display_name | Yingwen Fu |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I186272606, https://openalex.org/I4210091137 |
| authorships[0].affiliations[0].raw_affiliation_string | Guangdong University of Foreign Studies, Guangzhou, China NetEase Games AI Lab, Guangzhou, China |
| authorships[0].institutions[0].id | https://openalex.org/I186272606 |
| authorships[0].institutions[0].ror | https://ror.org/00fhc9y79 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I186272606 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Guangdong University of Foreign Studies |
| authorships[0].institutions[1].id | https://openalex.org/I4210091137 |
| authorships[0].institutions[1].ror | https://ror.org/00fp6fj05 |
| authorships[0].institutions[1].type | company |
| authorships[0].institutions[1].lineage | https://openalex.org/I4210091137 |
| authorships[0].institutions[1].country_code | CN |
| authorships[0].institutions[1].display_name | NetEase (China) |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Yingwen Fu |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Guangdong University of Foreign Studies, Guangzhou, China NetEase Games AI Lab, Guangzhou, China |
| authorships[1].author.id | https://openalex.org/A5012846747 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Wenjie Ou |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I4210091137 |
| authorships[1].affiliations[0].raw_affiliation_string | NetEase Games AI Lab, Guangzhou, China |
| authorships[1].institutions[0].id | https://openalex.org/I4210091137 |
| authorships[1].institutions[0].ror | https://ror.org/00fp6fj05 |
| authorships[1].institutions[0].type | company |
| authorships[1].institutions[0].lineage | https://openalex.org/I4210091137 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | NetEase (China) |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Wenjie Ou |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | NetEase Games AI Lab, Guangzhou, China |
| authorships[2].author.id | https://openalex.org/A5016175345 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-4188-9953 |
| authorships[2].author.display_name | Yu Zhou |
| authorships[2].countries | US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I78577930 |
| authorships[2].affiliations[0].raw_affiliation_string | Columbia University |
| authorships[2].institutions[0].id | https://openalex.org/I78577930 |
| authorships[2].institutions[0].ror | https://ror.org/00hj8s172 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I78577930 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | Columbia University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Zhou Yu |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Columbia University |
| authorships[3].author.id | https://openalex.org/A5027859336 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-5333-511X |
| authorships[3].author.display_name | Yue Lin |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I4210091137 |
| authorships[3].affiliations[0].raw_affiliation_string | NetEase Games AI Lab, Guangzhou, China |
| authorships[3].institutions[0].id | https://openalex.org/I4210091137 |
| authorships[3].institutions[0].ror | https://ror.org/00fp6fj05 |
| authorships[3].institutions[0].type | company |
| authorships[3].institutions[0].lineage | https://openalex.org/I4210091137 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | NetEase (China) |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Yue Lin |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | NetEase Games AI Lab, Guangzhou, China |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://ojs.aaai.org/index.php/AAAI/article/download/26504/26276 |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | MIGA: A Unified Multi-Task Generation Framework for Conversational Text-to-SQL |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10028 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9986000061035156 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Topic Modeling |
| related_works | https://openalex.org/W2769255368, https://openalex.org/W323219885, https://openalex.org/W4292559016, https://openalex.org/W4231937131, https://openalex.org/W1589342014, https://openalex.org/W598950423, https://openalex.org/W4226226396, https://openalex.org/W3153750606, https://openalex.org/W4308854837, https://openalex.org/W2159231020 |
| cited_by_count | 8 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 5 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 2 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 1 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1609/aaai.v37i11.26504 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210191458 |
| best_oa_location.source.issn | 2159-5399, 2374-3468 |
| best_oa_location.source.type | conference |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2159-5399 |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Proceedings of the AAAI Conference on Artificial Intelligence |
| best_oa_location.source.host_organization | https://openalex.org/P4310320058 |
| best_oa_location.source.host_organization_name | Association for the Advancement of Artificial Intelligence |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320058 |
| best_oa_location.source.host_organization_lineage_names | Association for the Advancement of Artificial Intelligence |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://ojs.aaai.org/index.php/AAAI/article/download/26504/26276 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Proceedings of the AAAI Conference on Artificial Intelligence |
| best_oa_location.landing_page_url | https://doi.org/10.1609/aaai.v37i11.26504 |
| primary_location.id | doi:10.1609/aaai.v37i11.26504 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210191458 |
| primary_location.source.issn | 2159-5399, 2374-3468 |
| primary_location.source.type | conference |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2159-5399 |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Proceedings of the AAAI Conference on Artificial Intelligence |
| primary_location.source.host_organization | https://openalex.org/P4310320058 |
| primary_location.source.host_organization_name | Association for the Advancement of Artificial Intelligence |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320058 |
| primary_location.source.host_organization_lineage_names | Association for the Advancement of Artificial Intelligence |
| primary_location.license | |
| primary_location.pdf_url | https://ojs.aaai.org/index.php/AAAI/article/download/26504/26276 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Proceedings of the AAAI Conference on Artificial Intelligence |
| primary_location.landing_page_url | https://doi.org/10.1609/aaai.v37i11.26504 |
| publication_date | 2023-06-26 |
| publication_year | 2023 |
| referenced_works | https://openalex.org/W3124687886, https://openalex.org/W3098411750, https://openalex.org/W3169459536, https://openalex.org/W3172697395, https://openalex.org/W6796838256, https://openalex.org/W4224095501, https://openalex.org/W3173964589, https://openalex.org/W2896457183, https://openalex.org/W2997662139, https://openalex.org/W6754706484, https://openalex.org/W4225983122, https://openalex.org/W3004379681, https://openalex.org/W2970960706, https://openalex.org/W2898700502, https://openalex.org/W2981852735, https://openalex.org/W3200285169, https://openalex.org/W2797328513, https://openalex.org/W3201659492, https://openalex.org/W2799054028, https://openalex.org/W2985377636, https://openalex.org/W3111018782, https://openalex.org/W6791889131, https://openalex.org/W4280540152, https://openalex.org/W4221166833, https://openalex.org/W2768409085, https://openalex.org/W2605887895, https://openalex.org/W3091229675, https://openalex.org/W6601926947, https://openalex.org/W3119822474, https://openalex.org/W2970172141, https://openalex.org/W4221150648, https://openalex.org/W3085281588, https://openalex.org/W2751448157, https://openalex.org/W4385572953, https://openalex.org/W2923014074, https://openalex.org/W3034196295, https://openalex.org/W3103291908, https://openalex.org/W4288109580, https://openalex.org/W3170721718, https://openalex.org/W4288089799, https://openalex.org/W3141327079, https://openalex.org/W4293569541, https://openalex.org/W3175488485, https://openalex.org/W4322614701, https://openalex.org/W4287659415, https://openalex.org/W4385573339, https://openalex.org/W3103962261, https://openalex.org/W3176057191, https://openalex.org/W4288335742, https://openalex.org/W4226490385, https://openalex.org/W2963617989, https://openalex.org/W4292779060, https://openalex.org/W4289494028, https://openalex.org/W4308198680, https://openalex.org/W4300513200, https://openalex.org/W4288025992, https://openalex.org/W3174921180, https://openalex.org/W2952215380, https://openalex.org/W3214600982 |
| referenced_works_count | 59 |
| abstract_inverted_index.a | 36 |
| abstract_inverted_index.In | 31, 51 |
| abstract_inverted_index.We | 116 |
| abstract_inverted_index.as | 29 |
| abstract_inverted_index.in | 89 |
| abstract_inverted_index.is | 2 |
| abstract_inverted_index.on | 110, 126 |
| abstract_inverted_index.to | 4, 47, 80, 98, 106, 123 |
| abstract_inverted_index.we | 34, 93 |
| abstract_inverted_index.SQL | 13, 96 |
| abstract_inverted_index.T5. | 30 |
| abstract_inverted_index.and | 65, 114, 121 |
| abstract_inverted_index.are | 20 |
| abstract_inverted_index.for | 130 |
| abstract_inverted_index.new | 128 |
| abstract_inverted_index.the | 52, 58, 70, 82, 90, 100 |
| abstract_inverted_index.two | 111 |
| abstract_inverted_index.MIGA | 55, 104 |
| abstract_inverted_index.Most | 15 |
| abstract_inverted_index.also | 117 |
| abstract_inverted_index.four | 95 |
| abstract_inverted_index.from | 85 |
| abstract_inverted_index.into | 10, 61, 69 |
| abstract_inverted_index.main | 59, 83 |
| abstract_inverted_index.same | 71 |
| abstract_inverted_index.shed | 124 |
| abstract_inverted_index.some | 127 |
| abstract_inverted_index.such | 28 |
| abstract_inverted_index.task | 60, 84 |
| abstract_inverted_index.that | 43 |
| abstract_inverted_index.them | 68 |
| abstract_inverted_index.then | 66 |
| abstract_inverted_index.this | 32 |
| abstract_inverted_index.with | 22, 75 |
| abstract_inverted_index.Later | 88 |
| abstract_inverted_index.boost | 81 |
| abstract_inverted_index.error | 101 |
| abstract_inverted_index.first | 56 |
| abstract_inverted_index.light | 125 |
| abstract_inverted_index.tends | 105 |
| abstract_inverted_index.their | 11 |
| abstract_inverted_index.(MIGA) | 42 |
| abstract_inverted_index.(SparC | 113 |
| abstract_inverted_index.models | 26 |
| abstract_inverted_index.paper, | 33 |
| abstract_inverted_index.stage, | 54, 92 |
| abstract_inverted_index.tackle | 48 |
| abstract_inverted_index.(PLMs), | 27 |
| abstract_inverted_index.CoSQL). | 115 |
| abstract_inverted_index.PLMs’ | 45 |
| abstract_inverted_index.ability | 46 |
| abstract_inverted_index.achieve | 107 |
| abstract_inverted_index.methods | 19 |
| abstract_inverted_index.natural | 7, 77 |
| abstract_inverted_index.present | 35 |
| abstract_inverted_index.prompts | 79 |
| abstract_inverted_index.propose | 94 |
| abstract_inverted_index.provide | 118 |
| abstract_inverted_index.related | 63 |
| abstract_inverted_index.several | 62 |
| abstract_inverted_index.unified | 38 |
| abstract_inverted_index.unifies | 67 |
| abstract_inverted_index.advanced | 16 |
| abstract_inverted_index.analyses | 120 |
| abstract_inverted_index.designed | 3 |
| abstract_inverted_index.language | 8, 25, 78 |
| abstract_inverted_index.paradigm | 74 |
| abstract_inverted_index.problem. | 103 |
| abstract_inverted_index.queries. | 14 |
| abstract_inverted_index.(Seq2Seq) | 73 |
| abstract_inverted_index.alleviate | 99 |
| abstract_inverted_index.extensive | 119 |
| abstract_inverted_index.frAmework | 41 |
| abstract_inverted_index.leverages | 44 |
| abstract_inverted_index.questions | 9 |
| abstract_inverted_index.sub-tasks | 64 |
| abstract_inverted_index.training. | 87 |
| abstract_inverted_index.translate | 5 |
| abstract_inverted_index.two-stage | 37 |
| abstract_inverted_index.Generation | 40 |
| abstract_inverted_index.MultI-task | 39 |
| abstract_inverted_index.benchmarks | 112 |
| abstract_inverted_index.decomposes | 57 |
| abstract_inverted_index.generative | 23 |
| abstract_inverted_index.multi-task | 86 |
| abstract_inverted_index.multi-turn | 6 |
| abstract_inverted_index.discussions | 122 |
| abstract_inverted_index.fine-tuning | 91 |
| abstract_inverted_index.performance | 109 |
| abstract_inverted_index.pre-trained | 24 |
| abstract_inverted_index.propagation | 102 |
| abstract_inverted_index.text-to-SQL | 1, 18 |
| abstract_inverted_index.incompatible | 21 |
| abstract_inverted_index.perspectives | 129 |
| abstract_inverted_index.pre-training | 53 |
| abstract_inverted_index.text-to-SQL. | 50, 132 |
| abstract_inverted_index.corresponding | 12 |
| abstract_inverted_index.perturbations | 97 |
| abstract_inverted_index.task-specific | 76 |
| abstract_inverted_index.Conversational | 0 |
| abstract_inverted_index.conversational | 17, 49, 131 |
| abstract_inverted_index.state-of-the-art | 108 |
| abstract_inverted_index.sequence-to-sequence | 72 |
| cited_by_percentile_year.max | 98 |
| cited_by_percentile_year.min | 89 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 4 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/4 |
| sustainable_development_goals[0].score | 0.7699999809265137 |
| sustainable_development_goals[0].display_name | Quality Education |
| citation_normalized_percentile.value | 0.73996873 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |