Mild Cognitive Impairment Classification Using A Novel Finer-Scale Brain Connectome Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.1109/isbi56570.2024.10635558
Mild cognitive impairment (MCI) is recognized as a precursor to Alzheimer's disease (AD), a progressive and irreversible neurodegenerative disorder of the brain. The neurodegeneration of brain connectivity networks plays a pivotal role in the development and progression of MCI. Traditionally, brain networks are generated using coarse-grained brain regions, where the regions serve as nodes and their functional or structural connections are used as edges. Recently, a novel finer scale brain folding patterns named 3-hinge gyrus (3HG) was identified, which is defined as the conjunctions coming from three directions on gyral crests. 3HGs have been shown playing an important role in brain network and can serve as hubs. In this study, our objective is to construct a novel 3HG-based finer-scale brain connectome and comprehensively compare its performance with traditional region-based connectome in predicting MCI against Normal Controls (NC). The results of extensive experiments demonstrate the superior performance of 3HG-based brain connectome, shedding light on the potential of 3HG-based connectomes in capturing intricate neurodegenerative patterns associated with MCI and AD.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1109/isbi56570.2024.10635558
- OA Status
- green
- Cited By
- 4
- References
- 26
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4401794700
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4401794700Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1109/isbi56570.2024.10635558Digital Object Identifier
- Title
-
Mild Cognitive Impairment Classification Using A Novel Finer-Scale Brain ConnectomeWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-05-27Full publication date if available
- Authors
-
Yanjun Lyu, Lu Zhang, Xiaowei Yu, Chao Cao, Tianming Liu, Dajiang ZhuList of authors in order
- Landing page
-
https://doi.org/10.1109/isbi56570.2024.10635558Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://www.ncbi.nlm.nih.gov/pmc/articles/11864805Direct OA link when available
- Concepts
-
Connectome, Computer science, Cognitive impairment, Scale (ratio), Cognition, Neuroscience, Functional connectivity, Psychology, Cartography, GeographyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
4Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 4Per-year citation counts (last 5 years)
- References (count)
-
26Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4401794700 |
|---|---|
| doi | https://doi.org/10.1109/isbi56570.2024.10635558 |
| ids.doi | https://doi.org/10.1109/isbi56570.2024.10635558 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/40012832 |
| ids.openalex | https://openalex.org/W4401794700 |
| fwci | 2.81120225 |
| type | article |
| title | Mild Cognitive Impairment Classification Using A Novel Finer-Scale Brain Connectome |
| biblio.issue | |
| biblio.volume | 2024 |
| biblio.last_page | 5 |
| biblio.first_page | 1 |
| topics[0].id | https://openalex.org/T10241 |
| topics[0].field.id | https://openalex.org/fields/28 |
| topics[0].field.display_name | Neuroscience |
| topics[0].score | 1.0 |
| topics[0].domain.id | https://openalex.org/domains/1 |
| topics[0].domain.display_name | Life Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2805 |
| topics[0].subfield.display_name | Cognitive Neuroscience |
| topics[0].display_name | Functional Brain Connectivity Studies |
| topics[1].id | https://openalex.org/T11304 |
| topics[1].field.id | https://openalex.org/fields/27 |
| topics[1].field.display_name | Medicine |
| topics[1].score | 0.9914000034332275 |
| topics[1].domain.id | https://openalex.org/domains/4 |
| topics[1].domain.display_name | Health Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2741 |
| topics[1].subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| topics[1].display_name | Advanced Neuroimaging Techniques and Applications |
| topics[2].id | https://openalex.org/T10378 |
| topics[2].field.id | https://openalex.org/fields/27 |
| topics[2].field.display_name | Medicine |
| topics[2].score | 0.9894000291824341 |
| topics[2].domain.id | https://openalex.org/domains/4 |
| topics[2].domain.display_name | Health Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2741 |
| topics[2].subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| topics[2].display_name | Advanced MRI Techniques and Applications |
| funders[0].id | https://openalex.org/F4320338440 |
| funders[0].ror | |
| funders[0].display_name | HORIZON EUROPE Health |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C45715564 |
| concepts[0].level | 3 |
| concepts[0].score | 0.8564389944076538 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1292103 |
| concepts[0].display_name | Connectome |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.6189536452293396 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C2984915365 |
| concepts[2].level | 3 |
| concepts[2].score | 0.5363672375679016 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q5141203 |
| concepts[2].display_name | Cognitive impairment |
| concepts[3].id | https://openalex.org/C2778755073 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5297713279724121 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q10858537 |
| concepts[3].display_name | Scale (ratio) |
| concepts[4].id | https://openalex.org/C169900460 |
| concepts[4].level | 2 |
| concepts[4].score | 0.4564895033836365 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q2200417 |
| concepts[4].display_name | Cognition |
| concepts[5].id | https://openalex.org/C169760540 |
| concepts[5].level | 1 |
| concepts[5].score | 0.3414463400840759 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q207011 |
| concepts[5].display_name | Neuroscience |
| concepts[6].id | https://openalex.org/C3018011982 |
| concepts[6].level | 2 |
| concepts[6].score | 0.25002601742744446 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q7316120 |
| concepts[6].display_name | Functional connectivity |
| concepts[7].id | https://openalex.org/C15744967 |
| concepts[7].level | 0 |
| concepts[7].score | 0.19514134526252747 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q9418 |
| concepts[7].display_name | Psychology |
| concepts[8].id | https://openalex.org/C58640448 |
| concepts[8].level | 1 |
| concepts[8].score | 0.07034412026405334 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q42515 |
| concepts[8].display_name | Cartography |
| concepts[9].id | https://openalex.org/C205649164 |
| concepts[9].level | 0 |
| concepts[9].score | 0.0 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[9].display_name | Geography |
| keywords[0].id | https://openalex.org/keywords/connectome |
| keywords[0].score | 0.8564389944076538 |
| keywords[0].display_name | Connectome |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.6189536452293396 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/cognitive-impairment |
| keywords[2].score | 0.5363672375679016 |
| keywords[2].display_name | Cognitive impairment |
| keywords[3].id | https://openalex.org/keywords/scale |
| keywords[3].score | 0.5297713279724121 |
| keywords[3].display_name | Scale (ratio) |
| keywords[4].id | https://openalex.org/keywords/cognition |
| keywords[4].score | 0.4564895033836365 |
| keywords[4].display_name | Cognition |
| keywords[5].id | https://openalex.org/keywords/neuroscience |
| keywords[5].score | 0.3414463400840759 |
| keywords[5].display_name | Neuroscience |
| keywords[6].id | https://openalex.org/keywords/functional-connectivity |
| keywords[6].score | 0.25002601742744446 |
| keywords[6].display_name | Functional connectivity |
| keywords[7].id | https://openalex.org/keywords/psychology |
| keywords[7].score | 0.19514134526252747 |
| keywords[7].display_name | Psychology |
| keywords[8].id | https://openalex.org/keywords/cartography |
| keywords[8].score | 0.07034412026405334 |
| keywords[8].display_name | Cartography |
| language | en |
| locations[0].id | doi:10.1109/isbi56570.2024.10635558 |
| locations[0].is_oa | False |
| locations[0].source | |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | proceedings-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | 2024 IEEE International Symposium on Biomedical Imaging (ISBI) |
| locations[0].landing_page_url | https://doi.org/10.1109/isbi56570.2024.10635558 |
| locations[1].id | pmid:40012832 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Proceedings. IEEE International Symposium on Biomedical Imaging |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/40012832 |
| locations[2].id | pmh:oai:pubmedcentral.nih.gov:11864805 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S2764455111 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | PubMed Central |
| locations[2].source.host_organization | https://openalex.org/I1299303238 |
| locations[2].source.host_organization_name | National Institutes of Health |
| locations[2].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | Text |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Proc IEEE Int Symp Biomed Imaging |
| locations[2].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/11864805 |
| indexed_in | crossref, pubmed |
| authorships[0].author.id | https://openalex.org/A5053007087 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-1243-233X |
| authorships[0].author.display_name | Yanjun Lyu |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I189196454 |
| authorships[0].affiliations[0].raw_affiliation_string | University of Texas at Arlington,Computer Science and Engineering,Arlington,TX,USA |
| authorships[0].institutions[0].id | https://openalex.org/I189196454 |
| authorships[0].institutions[0].ror | https://ror.org/019kgqr73 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I189196454 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | The University of Texas at Arlington |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Yanjun Lyu |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | University of Texas at Arlington,Computer Science and Engineering,Arlington,TX,USA |
| authorships[1].author.id | https://openalex.org/A5035359666 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-8859-5453 |
| authorships[1].author.display_name | Lu Zhang |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I189196454 |
| authorships[1].affiliations[0].raw_affiliation_string | University of Texas at Arlington,Computer Science and Engineering,Arlington,TX,USA |
| authorships[1].institutions[0].id | https://openalex.org/I189196454 |
| authorships[1].institutions[0].ror | https://ror.org/019kgqr73 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I189196454 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | The University of Texas at Arlington |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Lu Zhang |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | University of Texas at Arlington,Computer Science and Engineering,Arlington,TX,USA |
| authorships[2].author.id | https://openalex.org/A5062577958 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-5599-8424 |
| authorships[2].author.display_name | Xiaowei Yu |
| authorships[2].countries | US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I189196454 |
| authorships[2].affiliations[0].raw_affiliation_string | University of Texas at Arlington,Computer Science and Engineering,Arlington,TX,USA |
| authorships[2].institutions[0].id | https://openalex.org/I189196454 |
| authorships[2].institutions[0].ror | https://ror.org/019kgqr73 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I189196454 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | The University of Texas at Arlington |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Xiaowei Yu |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | University of Texas at Arlington,Computer Science and Engineering,Arlington,TX,USA |
| authorships[3].author.id | https://openalex.org/A5101308694 |
| authorships[3].author.orcid | https://orcid.org/0009-0009-6844-519X |
| authorships[3].author.display_name | Chao Cao |
| authorships[3].countries | US |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I189196454 |
| authorships[3].affiliations[0].raw_affiliation_string | University of Texas at Arlington,Computer Science and Engineering,Arlington,TX,USA |
| authorships[3].institutions[0].id | https://openalex.org/I189196454 |
| authorships[3].institutions[0].ror | https://ror.org/019kgqr73 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I189196454 |
| authorships[3].institutions[0].country_code | US |
| authorships[3].institutions[0].display_name | The University of Texas at Arlington |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Chao Cao |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | University of Texas at Arlington,Computer Science and Engineering,Arlington,TX,USA |
| authorships[4].author.id | https://openalex.org/A5100647159 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Tianming Liu |
| authorships[4].countries | US |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I165733156 |
| authorships[4].affiliations[0].raw_affiliation_string | University of Georgia,School of Computing,GA,USA |
| authorships[4].institutions[0].id | https://openalex.org/I165733156 |
| authorships[4].institutions[0].ror | https://ror.org/00te3t702 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I165733156 |
| authorships[4].institutions[0].country_code | US |
| authorships[4].institutions[0].display_name | University of Georgia |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Tianming Liu |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | University of Georgia,School of Computing,GA,USA |
| authorships[5].author.id | https://openalex.org/A5038582366 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-6940-3911 |
| authorships[5].author.display_name | Dajiang Zhu |
| authorships[5].countries | US |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I189196454 |
| authorships[5].affiliations[0].raw_affiliation_string | University of Texas at Arlington,Computer Science and Engineering,Arlington,TX,USA |
| authorships[5].institutions[0].id | https://openalex.org/I189196454 |
| authorships[5].institutions[0].ror | https://ror.org/019kgqr73 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I189196454 |
| authorships[5].institutions[0].country_code | US |
| authorships[5].institutions[0].display_name | The University of Texas at Arlington |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Dajiang Zhu |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | University of Texas at Arlington,Computer Science and Engineering,Arlington,TX,USA |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.ncbi.nlm.nih.gov/pmc/articles/11864805 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Mild Cognitive Impairment Classification Using A Novel Finer-Scale Brain Connectome |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10241 |
| primary_topic.field.id | https://openalex.org/fields/28 |
| primary_topic.field.display_name | Neuroscience |
| primary_topic.score | 1.0 |
| primary_topic.domain.id | https://openalex.org/domains/1 |
| primary_topic.domain.display_name | Life Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2805 |
| primary_topic.subfield.display_name | Cognitive Neuroscience |
| primary_topic.display_name | Functional Brain Connectivity Studies |
| related_works | https://openalex.org/W2043847720, https://openalex.org/W4312963348, https://openalex.org/W1744057168, https://openalex.org/W2962960039, https://openalex.org/W3180551345, https://openalex.org/W3019511099, https://openalex.org/W4287102215, https://openalex.org/W4380291026, https://openalex.org/W2286126108, https://openalex.org/W3048234683 |
| cited_by_count | 4 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 4 |
| locations_count | 3 |
| best_oa_location.id | pmh:oai:pubmedcentral.nih.gov:11864805 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2764455111 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | PubMed Central |
| best_oa_location.source.host_organization | https://openalex.org/I1299303238 |
| best_oa_location.source.host_organization_name | National Institutes of Health |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I1299303238 |
| best_oa_location.license | |
| best_oa_location.pdf_url | |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | Text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | Proc IEEE Int Symp Biomed Imaging |
| best_oa_location.landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/11864805 |
| primary_location.id | doi:10.1109/isbi56570.2024.10635558 |
| primary_location.is_oa | False |
| primary_location.source | |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | proceedings-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | 2024 IEEE International Symposium on Biomedical Imaging (ISBI) |
| primary_location.landing_page_url | https://doi.org/10.1109/isbi56570.2024.10635558 |
| publication_date | 2024-05-27 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W3039069028, https://openalex.org/W2795210288, https://openalex.org/W761823288, https://openalex.org/W1969700144, https://openalex.org/W2075496760, https://openalex.org/W1550018017, https://openalex.org/W1991933335, https://openalex.org/W2094347446, https://openalex.org/W2109891507, https://openalex.org/W2040412343, https://openalex.org/W3157129463, https://openalex.org/W2009650955, https://openalex.org/W6764540182, https://openalex.org/W2159929956, https://openalex.org/W2072522618, https://openalex.org/W2071714163, https://openalex.org/W2124953625, https://openalex.org/W1999653836, https://openalex.org/W2735899459, https://openalex.org/W2810912854, https://openalex.org/W2998933725, https://openalex.org/W4310950351, https://openalex.org/W3089794503, https://openalex.org/W2222512263, https://openalex.org/W2160371232, https://openalex.org/W2951279646 |
| referenced_works_count | 26 |
| abstract_inverted_index.a | 7, 13, 29, 65, 115 |
| abstract_inverted_index.In | 107 |
| abstract_inverted_index.an | 96 |
| abstract_inverted_index.as | 6, 52, 62, 81, 105 |
| abstract_inverted_index.in | 32, 99, 130, 158 |
| abstract_inverted_index.is | 4, 79, 112 |
| abstract_inverted_index.of | 19, 24, 37, 139, 146, 155 |
| abstract_inverted_index.on | 88, 152 |
| abstract_inverted_index.or | 57 |
| abstract_inverted_index.to | 9, 113 |
| abstract_inverted_index.AD. | 167 |
| abstract_inverted_index.MCI | 132, 165 |
| abstract_inverted_index.The | 22, 137 |
| abstract_inverted_index.and | 15, 35, 54, 102, 121, 166 |
| abstract_inverted_index.are | 42, 60 |
| abstract_inverted_index.can | 103 |
| abstract_inverted_index.its | 124 |
| abstract_inverted_index.our | 110 |
| abstract_inverted_index.the | 20, 33, 49, 82, 143, 153 |
| abstract_inverted_index.was | 76 |
| abstract_inverted_index.3HGs | 91 |
| abstract_inverted_index.MCI. | 38 |
| abstract_inverted_index.Mild | 0 |
| abstract_inverted_index.been | 93 |
| abstract_inverted_index.from | 85 |
| abstract_inverted_index.have | 92 |
| abstract_inverted_index.role | 31, 98 |
| abstract_inverted_index.this | 108 |
| abstract_inverted_index.used | 61 |
| abstract_inverted_index.with | 126, 164 |
| abstract_inverted_index.(3HG) | 75 |
| abstract_inverted_index.(AD), | 12 |
| abstract_inverted_index.(MCI) | 3 |
| abstract_inverted_index.(NC). | 136 |
| abstract_inverted_index.brain | 25, 40, 46, 69, 100, 119, 148 |
| abstract_inverted_index.finer | 67 |
| abstract_inverted_index.gyral | 89 |
| abstract_inverted_index.gyrus | 74 |
| abstract_inverted_index.hubs. | 106 |
| abstract_inverted_index.light | 151 |
| abstract_inverted_index.named | 72 |
| abstract_inverted_index.nodes | 53 |
| abstract_inverted_index.novel | 66, 116 |
| abstract_inverted_index.plays | 28 |
| abstract_inverted_index.scale | 68 |
| abstract_inverted_index.serve | 51, 104 |
| abstract_inverted_index.shown | 94 |
| abstract_inverted_index.their | 55 |
| abstract_inverted_index.three | 86 |
| abstract_inverted_index.using | 44 |
| abstract_inverted_index.where | 48 |
| abstract_inverted_index.which | 78 |
| abstract_inverted_index.Normal | 134 |
| abstract_inverted_index.brain. | 21 |
| abstract_inverted_index.coming | 84 |
| abstract_inverted_index.edges. | 63 |
| abstract_inverted_index.study, | 109 |
| abstract_inverted_index.3-hinge | 73 |
| abstract_inverted_index.against | 133 |
| abstract_inverted_index.compare | 123 |
| abstract_inverted_index.crests. | 90 |
| abstract_inverted_index.defined | 80 |
| abstract_inverted_index.disease | 11 |
| abstract_inverted_index.folding | 70 |
| abstract_inverted_index.network | 101 |
| abstract_inverted_index.pivotal | 30 |
| abstract_inverted_index.playing | 95 |
| abstract_inverted_index.regions | 50 |
| abstract_inverted_index.results | 138 |
| abstract_inverted_index.Controls | 135 |
| abstract_inverted_index.disorder | 18 |
| abstract_inverted_index.networks | 27, 41 |
| abstract_inverted_index.patterns | 71, 162 |
| abstract_inverted_index.regions, | 47 |
| abstract_inverted_index.shedding | 150 |
| abstract_inverted_index.superior | 144 |
| abstract_inverted_index.3HG-based | 117, 147, 156 |
| abstract_inverted_index.Recently, | 64 |
| abstract_inverted_index.capturing | 159 |
| abstract_inverted_index.cognitive | 1 |
| abstract_inverted_index.construct | 114 |
| abstract_inverted_index.extensive | 140 |
| abstract_inverted_index.generated | 43 |
| abstract_inverted_index.important | 97 |
| abstract_inverted_index.intricate | 160 |
| abstract_inverted_index.objective | 111 |
| abstract_inverted_index.potential | 154 |
| abstract_inverted_index.precursor | 8 |
| abstract_inverted_index.associated | 163 |
| abstract_inverted_index.connectome | 120, 129 |
| abstract_inverted_index.directions | 87 |
| abstract_inverted_index.functional | 56 |
| abstract_inverted_index.impairment | 2 |
| abstract_inverted_index.predicting | 131 |
| abstract_inverted_index.recognized | 5 |
| abstract_inverted_index.structural | 58 |
| abstract_inverted_index.Alzheimer's | 10 |
| abstract_inverted_index.connections | 59 |
| abstract_inverted_index.connectome, | 149 |
| abstract_inverted_index.connectomes | 157 |
| abstract_inverted_index.demonstrate | 142 |
| abstract_inverted_index.development | 34 |
| abstract_inverted_index.experiments | 141 |
| abstract_inverted_index.finer-scale | 118 |
| abstract_inverted_index.identified, | 77 |
| abstract_inverted_index.performance | 125, 145 |
| abstract_inverted_index.progression | 36 |
| abstract_inverted_index.progressive | 14 |
| abstract_inverted_index.traditional | 127 |
| abstract_inverted_index.conjunctions | 83 |
| abstract_inverted_index.connectivity | 26 |
| abstract_inverted_index.irreversible | 16 |
| abstract_inverted_index.region-based | 128 |
| abstract_inverted_index.Traditionally, | 39 |
| abstract_inverted_index.coarse-grained | 45 |
| abstract_inverted_index.comprehensively | 122 |
| abstract_inverted_index.neurodegeneration | 23 |
| abstract_inverted_index.neurodegenerative | 17, 161 |
| cited_by_percentile_year.max | 98 |
| cited_by_percentile_year.min | 97 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 6 |
| citation_normalized_percentile.value | 0.85292525 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |