MIMII Dataset: Sound Dataset for Malfunctioning Industrial Machine Investigation and Inspection Article Swipe
YOU?
·
· 2019
· Open Access
·
· DOI: https://doi.org/10.5281/zenodo.3384387
This dataset is a sound dataset for malfunctioning industrial machine investigation and inspection (MIMII dataset). It contains the sounds generated from four types of industrial machines, i.e. valves, pumps, fans, and slide rails. Each type of machine includes seven individual product models*1, and the data for each model contains normal sounds (from 5000 seconds to 10000 seconds) and anomalous sounds (about 1000 seconds). To resemble a real-life scenario, various anomalous sounds were recorded (e.g., contamination, leakage, rotating unbalance, and rail damage). Also, the background noise recorded in multiple real factories was mixed with the machine sounds. The sounds were recorded by eight-channel microphone array with 16 kHz sampling rate and 16 bit per sample. The MIMII dataset assists benchmark for sound-based machine fault diagnosis. Users can test the performance for specific functions e.g., unsupervised anomaly detection, transfer learning, noise robustness, etc. The detail of the dataset is described in [1][2]. This dataset is made available by Hitachi, Ltd. under a Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) license. A baseline sample code for anomaly detection is available on GitHub: https://github.com/MIMII-hitachi/mimii_baseline/ *1: This version "public 1.0" contains four models (model ID 00, 02, 04, and 06). The rest three models will be released in a future edition. [1] Harsh Purohit, Ryo Tanabe, Kenji Ichige, Takashi Endo, Yuki Nikaido, Kaori Suefusa, and Yohei Kawaguchi, “MIMII Dataset: Sound Dataset for Malfunctioning Industrial Machine Investigation and Inspection,” arXiv preprint arXiv:1909.09347, 2019. [2] Harsh Purohit, Ryo Tanabe, Kenji Ichige, Takashi Endo, Yuki Nikaido, Kaori Suefusa, and Yohei Kawaguchi, “MIMII Dataset: Sound Dataset for Malfunctioning Industrial Machine Investigation and Inspection,” in Proc. 4th Workshop on Detection and Classification of Acoustic Scenes and Events (DCASE), 2019.
Related Topics
- Type
- dataset
- Language
- en
- Landing Page
- https://doi.org/10.5281/zenodo.3384387
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4394036523
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4394036523Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.5281/zenodo.3384387Digital Object Identifier
- Title
-
MIMII Dataset: Sound Dataset for Malfunctioning Industrial Machine Investigation and InspectionWork title
- Type
-
datasetOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2019Year of publication
- Publication date
-
2019-09-20Full publication date if available
- Authors
-
Harsh Purohit, Ryo Tanabe, Kenji Ichige, Takashi Endo, Yuki Nikaido, Kaori Suefusa, Yohei KawaguchiList of authors in order
- Landing page
-
https://doi.org/10.5281/zenodo.3384387Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.5281/zenodo.3384387Direct OA link when available
- Concepts
-
Sound (geography), Computer science, Engineering, Acoustics, PhysicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4394036523 |
|---|---|
| doi | https://doi.org/10.5281/zenodo.3384387 |
| ids.doi | https://doi.org/10.5281/zenodo.3384387 |
| ids.openalex | https://openalex.org/W4394036523 |
| fwci | |
| type | dataset |
| title | MIMII Dataset: Sound Dataset for Malfunctioning Industrial Machine Investigation and Inspection |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10534 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9573000073432922 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2205 |
| topics[0].subfield.display_name | Civil and Structural Engineering |
| topics[0].display_name | Structural Health Monitoring Techniques |
| topics[1].id | https://openalex.org/T12169 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9452000260353088 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2210 |
| topics[1].subfield.display_name | Mechanical Engineering |
| topics[1].display_name | Non-Destructive Testing Techniques |
| topics[2].id | https://openalex.org/T12759 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9286999702453613 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2203 |
| topics[2].subfield.display_name | Automotive Engineering |
| topics[2].display_name | Vehicle Noise and Vibration Control |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C203718221 |
| concepts[0].level | 2 |
| concepts[0].score | 0.524284303188324 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q491713 |
| concepts[0].display_name | Sound (geography) |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.4527277946472168 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C127413603 |
| concepts[2].level | 0 |
| concepts[2].score | 0.36844053864479065 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[2].display_name | Engineering |
| concepts[3].id | https://openalex.org/C24890656 |
| concepts[3].level | 1 |
| concepts[3].score | 0.17789480090141296 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q82811 |
| concepts[3].display_name | Acoustics |
| concepts[4].id | https://openalex.org/C121332964 |
| concepts[4].level | 0 |
| concepts[4].score | 0.03865939378738403 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[4].display_name | Physics |
| keywords[0].id | https://openalex.org/keywords/sound |
| keywords[0].score | 0.524284303188324 |
| keywords[0].display_name | Sound (geography) |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.4527277946472168 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/engineering |
| keywords[2].score | 0.36844053864479065 |
| keywords[2].display_name | Engineering |
| keywords[3].id | https://openalex.org/keywords/acoustics |
| keywords[3].score | 0.17789480090141296 |
| keywords[3].display_name | Acoustics |
| keywords[4].id | https://openalex.org/keywords/physics |
| keywords[4].score | 0.03865939378738403 |
| keywords[4].display_name | Physics |
| language | en |
| locations[0].id | doi:10.5281/zenodo.3384387 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400562 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Zenodo (CERN European Organization for Nuclear Research) |
| locations[0].source.host_organization | https://openalex.org/I67311998 |
| locations[0].source.host_organization_name | European Organization for Nuclear Research |
| locations[0].source.host_organization_lineage | https://openalex.org/I67311998 |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | |
| locations[0].raw_type | dataset |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.5281/zenodo.3384387 |
| indexed_in | datacite |
| authorships[0].author.id | https://openalex.org/A5009996210 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-1923-7932 |
| authorships[0].author.display_name | Harsh Purohit |
| authorships[0].countries | JP |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I65143321 |
| authorships[0].affiliations[0].raw_affiliation_string | Hitachi, Ltd. |
| authorships[0].institutions[0].id | https://openalex.org/I65143321 |
| authorships[0].institutions[0].ror | https://ror.org/02exqgm79 |
| authorships[0].institutions[0].type | company |
| authorships[0].institutions[0].lineage | https://openalex.org/I65143321 |
| authorships[0].institutions[0].country_code | JP |
| authorships[0].institutions[0].display_name | Hitachi (Japan) |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Harsh Purohit |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Hitachi, Ltd. |
| authorships[1].author.id | https://openalex.org/A5110775861 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Ryo Tanabe |
| authorships[1].countries | JP |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I65143321 |
| authorships[1].affiliations[0].raw_affiliation_string | Hitachi, Ltd. |
| authorships[1].institutions[0].id | https://openalex.org/I65143321 |
| authorships[1].institutions[0].ror | https://ror.org/02exqgm79 |
| authorships[1].institutions[0].type | company |
| authorships[1].institutions[0].lineage | https://openalex.org/I65143321 |
| authorships[1].institutions[0].country_code | JP |
| authorships[1].institutions[0].display_name | Hitachi (Japan) |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Ryo Tanabe |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Hitachi, Ltd. |
| authorships[2].author.id | https://openalex.org/A5103894810 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Kenji Ichige |
| authorships[2].countries | JP |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I65143321 |
| authorships[2].affiliations[0].raw_affiliation_string | Hitachi, Ltd. |
| authorships[2].institutions[0].id | https://openalex.org/I65143321 |
| authorships[2].institutions[0].ror | https://ror.org/02exqgm79 |
| authorships[2].institutions[0].type | company |
| authorships[2].institutions[0].lineage | https://openalex.org/I65143321 |
| authorships[2].institutions[0].country_code | JP |
| authorships[2].institutions[0].display_name | Hitachi (Japan) |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Kenji Ichige |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Hitachi, Ltd. |
| authorships[3].author.id | https://openalex.org/A5009546381 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-4580-1704 |
| authorships[3].author.display_name | Takashi Endo |
| authorships[3].countries | JP |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I65143321 |
| authorships[3].affiliations[0].raw_affiliation_string | Hitachi, Ltd. |
| authorships[3].institutions[0].id | https://openalex.org/I65143321 |
| authorships[3].institutions[0].ror | https://ror.org/02exqgm79 |
| authorships[3].institutions[0].type | company |
| authorships[3].institutions[0].lineage | https://openalex.org/I65143321 |
| authorships[3].institutions[0].country_code | JP |
| authorships[3].institutions[0].display_name | Hitachi (Japan) |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Takashi Endo |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Hitachi, Ltd. |
| authorships[4].author.id | https://openalex.org/A5085022397 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Yuki Nikaido |
| authorships[4].countries | JP |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I65143321 |
| authorships[4].affiliations[0].raw_affiliation_string | Hitachi, Ltd. |
| authorships[4].institutions[0].id | https://openalex.org/I65143321 |
| authorships[4].institutions[0].ror | https://ror.org/02exqgm79 |
| authorships[4].institutions[0].type | company |
| authorships[4].institutions[0].lineage | https://openalex.org/I65143321 |
| authorships[4].institutions[0].country_code | JP |
| authorships[4].institutions[0].display_name | Hitachi (Japan) |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Yuki Nikaido |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Hitachi, Ltd. |
| authorships[5].author.id | https://openalex.org/A5024355727 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-3303-9935 |
| authorships[5].author.display_name | Kaori Suefusa |
| authorships[5].countries | JP |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I65143321 |
| authorships[5].affiliations[0].raw_affiliation_string | Hitachi, Ltd. |
| authorships[5].institutions[0].id | https://openalex.org/I65143321 |
| authorships[5].institutions[0].ror | https://ror.org/02exqgm79 |
| authorships[5].institutions[0].type | company |
| authorships[5].institutions[0].lineage | https://openalex.org/I65143321 |
| authorships[5].institutions[0].country_code | JP |
| authorships[5].institutions[0].display_name | Hitachi (Japan) |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Kaori Suefusa |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Hitachi, Ltd. |
| authorships[6].author.id | https://openalex.org/A5052394367 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-2329-5441 |
| authorships[6].author.display_name | Yohei Kawaguchi |
| authorships[6].countries | JP |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I65143321 |
| authorships[6].affiliations[0].raw_affiliation_string | Hitachi, Ltd. |
| authorships[6].institutions[0].id | https://openalex.org/I65143321 |
| authorships[6].institutions[0].ror | https://ror.org/02exqgm79 |
| authorships[6].institutions[0].type | company |
| authorships[6].institutions[0].lineage | https://openalex.org/I65143321 |
| authorships[6].institutions[0].country_code | JP |
| authorships[6].institutions[0].display_name | Hitachi (Japan) |
| authorships[6].author_position | last |
| authorships[6].raw_author_name | Yohei Kawaguchi |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | Hitachi, Ltd. |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.5281/zenodo.3384387 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | MIMII Dataset: Sound Dataset for Malfunctioning Industrial Machine Investigation and Inspection |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10534 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9573000073432922 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2205 |
| primary_topic.subfield.display_name | Civil and Structural Engineering |
| primary_topic.display_name | Structural Health Monitoring Techniques |
| related_works | https://openalex.org/W4391375266, https://openalex.org/W2748952813, https://openalex.org/W2390279801, https://openalex.org/W2358668433, https://openalex.org/W2376932109, https://openalex.org/W2001405890, https://openalex.org/W2909726438, https://openalex.org/W2382290278, https://openalex.org/W2478288626, https://openalex.org/W4391913857 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.5281/zenodo.3384387 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400562 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Zenodo (CERN European Organization for Nuclear Research) |
| best_oa_location.source.host_organization | https://openalex.org/I67311998 |
| best_oa_location.source.host_organization_name | European Organization for Nuclear Research |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I67311998 |
| best_oa_location.license | |
| best_oa_location.pdf_url | |
| best_oa_location.version | |
| best_oa_location.raw_type | dataset |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.5281/zenodo.3384387 |
| primary_location.id | doi:10.5281/zenodo.3384387 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400562 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Zenodo (CERN European Organization for Nuclear Research) |
| primary_location.source.host_organization | https://openalex.org/I67311998 |
| primary_location.source.host_organization_name | European Organization for Nuclear Research |
| primary_location.source.host_organization_lineage | https://openalex.org/I67311998 |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | |
| primary_location.raw_type | dataset |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.5281/zenodo.3384387 |
| publication_date | 2019-09-20 |
| publication_year | 2019 |
| referenced_works_count | 0 |
| abstract_inverted_index.A | 169 |
| abstract_inverted_index.a | 3, 65, 159, 204 |
| abstract_inverted_index.16 | 105, 110 |
| abstract_inverted_index.ID | 190 |
| abstract_inverted_index.It | 15 |
| abstract_inverted_index.To | 63 |
| abstract_inverted_index.be | 201 |
| abstract_inverted_index.by | 100, 155 |
| abstract_inverted_index.in | 86, 148, 203, 265 |
| abstract_inverted_index.is | 2, 146, 152, 176 |
| abstract_inverted_index.of | 23, 35, 143, 273 |
| abstract_inverted_index.on | 178, 269 |
| abstract_inverted_index.to | 54 |
| abstract_inverted_index.(CC | 165 |
| abstract_inverted_index.*1: | 181 |
| abstract_inverted_index.00, | 191 |
| abstract_inverted_index.02, | 192 |
| abstract_inverted_index.04, | 193 |
| abstract_inverted_index.4.0 | 163 |
| abstract_inverted_index.4th | 267 |
| abstract_inverted_index.Ryo | 210, 241 |
| abstract_inverted_index.The | 96, 114, 141, 196 |
| abstract_inverted_index.[1] | 207 |
| abstract_inverted_index.[2] | 238 |
| abstract_inverted_index.and | 11, 30, 42, 57, 78, 109, 194, 220, 232, 251, 263, 271, 276 |
| abstract_inverted_index.bit | 111 |
| abstract_inverted_index.can | 125 |
| abstract_inverted_index.for | 6, 45, 119, 129, 173, 227, 258 |
| abstract_inverted_index.kHz | 106 |
| abstract_inverted_index.per | 112 |
| abstract_inverted_index.the | 17, 43, 82, 93, 127, 144 |
| abstract_inverted_index.was | 90 |
| abstract_inverted_index.06). | 195 |
| abstract_inverted_index.1.0" | 185 |
| abstract_inverted_index.1000 | 61 |
| abstract_inverted_index.4.0) | 167 |
| abstract_inverted_index.5000 | 52 |
| abstract_inverted_index.Each | 33 |
| abstract_inverted_index.Ltd. | 157 |
| abstract_inverted_index.This | 0, 150, 182 |
| abstract_inverted_index.Yuki | 216, 247 |
| abstract_inverted_index.code | 172 |
| abstract_inverted_index.data | 44 |
| abstract_inverted_index.each | 46 |
| abstract_inverted_index.etc. | 140 |
| abstract_inverted_index.four | 21, 187 |
| abstract_inverted_index.from | 20 |
| abstract_inverted_index.i.e. | 26 |
| abstract_inverted_index.made | 153 |
| abstract_inverted_index.rail | 79 |
| abstract_inverted_index.rate | 108 |
| abstract_inverted_index.real | 88 |
| abstract_inverted_index.rest | 197 |
| abstract_inverted_index.test | 126 |
| abstract_inverted_index.type | 34 |
| abstract_inverted_index.were | 71, 98 |
| abstract_inverted_index.will | 200 |
| abstract_inverted_index.with | 92, 104 |
| abstract_inverted_index.(from | 51 |
| abstract_inverted_index.10000 | 55 |
| abstract_inverted_index.2019. | 237, 279 |
| abstract_inverted_index.Also, | 81 |
| abstract_inverted_index.BY-SA | 166 |
| abstract_inverted_index.Endo, | 215, 246 |
| abstract_inverted_index.Harsh | 208, 239 |
| abstract_inverted_index.Kaori | 218, 249 |
| abstract_inverted_index.Kenji | 212, 243 |
| abstract_inverted_index.MIMII | 115 |
| abstract_inverted_index.Proc. | 266 |
| abstract_inverted_index.Sound | 225, 256 |
| abstract_inverted_index.Users | 124 |
| abstract_inverted_index.Yohei | 221, 252 |
| abstract_inverted_index.arXiv | 234 |
| abstract_inverted_index.array | 103 |
| abstract_inverted_index.e.g., | 132 |
| abstract_inverted_index.fans, | 29 |
| abstract_inverted_index.fault | 122 |
| abstract_inverted_index.mixed | 91 |
| abstract_inverted_index.model | 47 |
| abstract_inverted_index.noise | 84, 138 |
| abstract_inverted_index.seven | 38 |
| abstract_inverted_index.slide | 31 |
| abstract_inverted_index.sound | 4 |
| abstract_inverted_index.three | 198 |
| abstract_inverted_index.types | 22 |
| abstract_inverted_index.under | 158 |
| abstract_inverted_index.(MIMII | 13 |
| abstract_inverted_index.(about | 60 |
| abstract_inverted_index.(e.g., | 73 |
| abstract_inverted_index.(model | 189 |
| abstract_inverted_index.Events | 277 |
| abstract_inverted_index.Scenes | 275 |
| abstract_inverted_index.detail | 142 |
| abstract_inverted_index.future | 205 |
| abstract_inverted_index.models | 188, 199 |
| abstract_inverted_index.normal | 49 |
| abstract_inverted_index.pumps, | 28 |
| abstract_inverted_index.rails. | 32 |
| abstract_inverted_index.sample | 171 |
| abstract_inverted_index.sounds | 18, 50, 59, 70, 97 |
| abstract_inverted_index."public | 184 |
| abstract_inverted_index.Commons | 161 |
| abstract_inverted_index.Dataset | 226, 257 |
| abstract_inverted_index.GitHub: | 179 |
| abstract_inverted_index.Ichige, | 213, 244 |
| abstract_inverted_index.Machine | 230, 261 |
| abstract_inverted_index.Takashi | 214, 245 |
| abstract_inverted_index.Tanabe, | 211, 242 |
| abstract_inverted_index.[1][2]. | 149 |
| abstract_inverted_index.anomaly | 134, 174 |
| abstract_inverted_index.assists | 117 |
| abstract_inverted_index.dataset | 1, 5, 116, 145, 151 |
| abstract_inverted_index.machine | 9, 36, 94, 121 |
| abstract_inverted_index.product | 40 |
| abstract_inverted_index.sample. | 113 |
| abstract_inverted_index.seconds | 53 |
| abstract_inverted_index.sounds. | 95 |
| abstract_inverted_index.valves, | 27 |
| abstract_inverted_index.various | 68 |
| abstract_inverted_index.version | 183 |
| abstract_inverted_index.(DCASE), | 278 |
| abstract_inverted_index.Acoustic | 274 |
| abstract_inverted_index.Creative | 160 |
| abstract_inverted_index.Dataset: | 224, 255 |
| abstract_inverted_index.Hitachi, | 156 |
| abstract_inverted_index.Nikaido, | 217, 248 |
| abstract_inverted_index.Purohit, | 209, 240 |
| abstract_inverted_index.Suefusa, | 219, 250 |
| abstract_inverted_index.Workshop | 268 |
| abstract_inverted_index.baseline | 170 |
| abstract_inverted_index.contains | 16, 48, 186 |
| abstract_inverted_index.damage). | 80 |
| abstract_inverted_index.edition. | 206 |
| abstract_inverted_index.includes | 37 |
| abstract_inverted_index.leakage, | 75 |
| abstract_inverted_index.license. | 168 |
| abstract_inverted_index.multiple | 87 |
| abstract_inverted_index.preprint | 235 |
| abstract_inverted_index.recorded | 72, 85, 99 |
| abstract_inverted_index.released | 202 |
| abstract_inverted_index.resemble | 64 |
| abstract_inverted_index.rotating | 76 |
| abstract_inverted_index.sampling | 107 |
| abstract_inverted_index.seconds) | 56 |
| abstract_inverted_index.specific | 130 |
| abstract_inverted_index.transfer | 136 |
| abstract_inverted_index.“MIMII | 223, 254 |
| abstract_inverted_index.Detection | 270 |
| abstract_inverted_index.anomalous | 58, 69 |
| abstract_inverted_index.available | 154, 177 |
| abstract_inverted_index.benchmark | 118 |
| abstract_inverted_index.dataset). | 14 |
| abstract_inverted_index.described | 147 |
| abstract_inverted_index.detection | 175 |
| abstract_inverted_index.factories | 89 |
| abstract_inverted_index.functions | 131 |
| abstract_inverted_index.generated | 19 |
| abstract_inverted_index.learning, | 137 |
| abstract_inverted_index.machines, | 25 |
| abstract_inverted_index.models*1, | 41 |
| abstract_inverted_index.real-life | 66 |
| abstract_inverted_index.scenario, | 67 |
| abstract_inverted_index.seconds). | 62 |
| abstract_inverted_index.Industrial | 229, 260 |
| abstract_inverted_index.Kawaguchi, | 222, 253 |
| abstract_inverted_index.background | 83 |
| abstract_inverted_index.detection, | 135 |
| abstract_inverted_index.diagnosis. | 123 |
| abstract_inverted_index.individual | 39 |
| abstract_inverted_index.industrial | 8, 24 |
| abstract_inverted_index.inspection | 12 |
| abstract_inverted_index.microphone | 102 |
| abstract_inverted_index.unbalance, | 77 |
| abstract_inverted_index.performance | 128 |
| abstract_inverted_index.robustness, | 139 |
| abstract_inverted_index.sound-based | 120 |
| abstract_inverted_index.unsupervised | 133 |
| abstract_inverted_index.International | 164 |
| abstract_inverted_index.Investigation | 231, 262 |
| abstract_inverted_index.eight-channel | 101 |
| abstract_inverted_index.investigation | 10 |
| abstract_inverted_index.Classification | 272 |
| abstract_inverted_index.Inspection,” | 233, 264 |
| abstract_inverted_index.Malfunctioning | 228, 259 |
| abstract_inverted_index.contamination, | 74 |
| abstract_inverted_index.malfunctioning | 7 |
| abstract_inverted_index.arXiv:1909.09347, | 236 |
| abstract_inverted_index.Attribution-ShareAlike | 162 |
| abstract_inverted_index.https://github.com/MIMII-hitachi/mimii_baseline/ | 180 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 7 |
| citation_normalized_percentile |