MIMIR: Masked Image Modeling for Mutual Information-based Adversarial Robustness Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2312.04960
Vision Transformers (ViTs) have emerged as a fundamental architecture and serve as the backbone of modern vision-language models. Despite their impressive performance, ViTs exhibit notable vulnerability to evasion attacks, necessitating the development of specialized Adversarial Training (AT) strategies tailored to their unique architecture. While a direct solution might involve applying existing AT methods to ViTs, our analysis reveals significant incompatibilities, particularly with state-of-the-art (SOTA) approaches such as Generalist (CVPR 2023) and DBAT (USENIX Security 2024). This paper presents a systematic investigation of adversarial robustness in ViTs and provides a novel theoretical Mutual Information (MI) analysis in its autoencoder-based self-supervised pre-training. Specifically, we show that MI between the adversarial example and its latent representation in ViT-based autoencoders should be constrained via derived MI bounds. Building on this insight, we propose a self-supervised AT method, MIMIR, that employs an MI penalty to facilitate adversarial pre-training by masked image modeling with autoencoders. Extensive experiments on CIFAR-10, Tiny-ImageNet, and ImageNet-1K show that MIMIR can consistently provide improved natural and robust accuracy, where MIMIR outperforms SOTA AT results on ImageNet-1K. Notably, MIMIR demonstrates superior robustness against unforeseen attacks and common corruption data and can also withstand adaptive attacks where the adversary possesses full knowledge of the defense mechanism.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2312.04960
- https://arxiv.org/pdf/2312.04960
- OA Status
- green
- Cited By
- 1
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4389599655
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4389599655Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2312.04960Digital Object Identifier
- Title
-
MIMIR: Masked Image Modeling for Mutual Information-based Adversarial RobustnessWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-12-08Full publication date if available
- Authors
-
Xiaoyun Xu, Shujian Yu, Jingzheng Wu, Stjepan PicekList of authors in order
- Landing page
-
https://arxiv.org/abs/2312.04960Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2312.04960Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2312.04960Direct OA link when available
- Concepts
-
Adversarial system, Computer science, Artificial intelligence, Machine learning, Adversary, Bottleneck, Convolutional neural network, Mutual information, Robustness (evolution), Computer security, Biochemistry, Embedded system, Chemistry, GeneTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4389599655 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2312.04960 |
| ids.doi | https://doi.org/10.48550/arxiv.2312.04960 |
| ids.openalex | https://openalex.org/W4389599655 |
| fwci | |
| type | preprint |
| title | MIMIR: Masked Image Modeling for Mutual Information-based Adversarial Robustness |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11689 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9997000098228455 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Adversarial Robustness in Machine Learning |
| topics[1].id | https://openalex.org/T10036 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9733999967575073 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1707 |
| topics[1].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[1].display_name | Advanced Neural Network Applications |
| topics[2].id | https://openalex.org/T11512 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9692999720573425 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Anomaly Detection Techniques and Applications |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C37736160 |
| concepts[0].level | 2 |
| concepts[0].score | 0.902756929397583 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1801315 |
| concepts[0].display_name | Adversarial system |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.7678936719894409 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C154945302 |
| concepts[2].level | 1 |
| concepts[2].score | 0.6277430653572083 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[2].display_name | Artificial intelligence |
| concepts[3].id | https://openalex.org/C119857082 |
| concepts[3].level | 1 |
| concepts[3].score | 0.5268957614898682 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[3].display_name | Machine learning |
| concepts[4].id | https://openalex.org/C41065033 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5162718296051025 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q2825412 |
| concepts[4].display_name | Adversary |
| concepts[5].id | https://openalex.org/C2780513914 |
| concepts[5].level | 2 |
| concepts[5].score | 0.485893189907074 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q18210350 |
| concepts[5].display_name | Bottleneck |
| concepts[6].id | https://openalex.org/C81363708 |
| concepts[6].level | 2 |
| concepts[6].score | 0.47570332884788513 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q17084460 |
| concepts[6].display_name | Convolutional neural network |
| concepts[7].id | https://openalex.org/C152139883 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4656921625137329 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q252973 |
| concepts[7].display_name | Mutual information |
| concepts[8].id | https://openalex.org/C63479239 |
| concepts[8].level | 3 |
| concepts[8].score | 0.41432714462280273 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q7353546 |
| concepts[8].display_name | Robustness (evolution) |
| concepts[9].id | https://openalex.org/C38652104 |
| concepts[9].level | 1 |
| concepts[9].score | 0.13965430855751038 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q3510521 |
| concepts[9].display_name | Computer security |
| concepts[10].id | https://openalex.org/C55493867 |
| concepts[10].level | 1 |
| concepts[10].score | 0.0 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q7094 |
| concepts[10].display_name | Biochemistry |
| concepts[11].id | https://openalex.org/C149635348 |
| concepts[11].level | 1 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q193040 |
| concepts[11].display_name | Embedded system |
| concepts[12].id | https://openalex.org/C185592680 |
| concepts[12].level | 0 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q2329 |
| concepts[12].display_name | Chemistry |
| concepts[13].id | https://openalex.org/C104317684 |
| concepts[13].level | 2 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q7187 |
| concepts[13].display_name | Gene |
| keywords[0].id | https://openalex.org/keywords/adversarial-system |
| keywords[0].score | 0.902756929397583 |
| keywords[0].display_name | Adversarial system |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.7678936719894409 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[2].score | 0.6277430653572083 |
| keywords[2].display_name | Artificial intelligence |
| keywords[3].id | https://openalex.org/keywords/machine-learning |
| keywords[3].score | 0.5268957614898682 |
| keywords[3].display_name | Machine learning |
| keywords[4].id | https://openalex.org/keywords/adversary |
| keywords[4].score | 0.5162718296051025 |
| keywords[4].display_name | Adversary |
| keywords[5].id | https://openalex.org/keywords/bottleneck |
| keywords[5].score | 0.485893189907074 |
| keywords[5].display_name | Bottleneck |
| keywords[6].id | https://openalex.org/keywords/convolutional-neural-network |
| keywords[6].score | 0.47570332884788513 |
| keywords[6].display_name | Convolutional neural network |
| keywords[7].id | https://openalex.org/keywords/mutual-information |
| keywords[7].score | 0.4656921625137329 |
| keywords[7].display_name | Mutual information |
| keywords[8].id | https://openalex.org/keywords/robustness |
| keywords[8].score | 0.41432714462280273 |
| keywords[8].display_name | Robustness (evolution) |
| keywords[9].id | https://openalex.org/keywords/computer-security |
| keywords[9].score | 0.13965430855751038 |
| keywords[9].display_name | Computer security |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2312.04960 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2312.04960 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2312.04960 |
| locations[1].id | doi:10.48550/arxiv.2312.04960 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2312.04960 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5100520413 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Xiaoyun Xu |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Xu, Xiaoyun |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5041358503 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-6385-1705 |
| authorships[1].author.display_name | Shujian Yu |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Yu, Shujian |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5101024367 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-5561-9829 |
| authorships[2].author.display_name | Jingzheng Wu |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Wu, Jingzheng |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5024072796 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-7509-4337 |
| authorships[3].author.display_name | Stjepan Picek |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Picek, Stjepan |
| authorships[3].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2312.04960 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | MIMIR: Masked Image Modeling for Mutual Information-based Adversarial Robustness |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T11689 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9997000098228455 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Adversarial Robustness in Machine Learning |
| related_works | https://openalex.org/W2595172197, https://openalex.org/W2084856301, https://openalex.org/W4320018150, https://openalex.org/W2040808657, https://openalex.org/W4239582170, https://openalex.org/W2918664383, https://openalex.org/W3123119822, https://openalex.org/W106056076, https://openalex.org/W4320855730, https://openalex.org/W2135200719 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2312.04960 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2312.04960 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2312.04960 |
| primary_location.id | pmh:oai:arXiv.org:2312.04960 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2312.04960 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2312.04960 |
| publication_date | 2023-12-08 |
| publication_year | 2023 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 6, 44, 78, 88, 129 |
| abstract_inverted_index.AT | 51, 131, 171 |
| abstract_inverted_index.MI | 104, 121, 137 |
| abstract_inverted_index.an | 136 |
| abstract_inverted_index.as | 5, 11, 66 |
| abstract_inverted_index.be | 117 |
| abstract_inverted_index.by | 143 |
| abstract_inverted_index.in | 84, 95, 113 |
| abstract_inverted_index.of | 14, 32, 81, 199 |
| abstract_inverted_index.on | 124, 151, 173 |
| abstract_inverted_index.to | 26, 39, 53, 139 |
| abstract_inverted_index.we | 101, 127 |
| abstract_inverted_index.and | 9, 70, 86, 109, 154, 164, 183, 187 |
| abstract_inverted_index.can | 159, 188 |
| abstract_inverted_index.its | 96, 110 |
| abstract_inverted_index.our | 55 |
| abstract_inverted_index.the | 12, 30, 106, 194, 200 |
| abstract_inverted_index.via | 119 |
| abstract_inverted_index.(AT) | 36 |
| abstract_inverted_index.(MI) | 93 |
| abstract_inverted_index.DBAT | 71 |
| abstract_inverted_index.SOTA | 170 |
| abstract_inverted_index.This | 75 |
| abstract_inverted_index.ViTs | 22, 85 |
| abstract_inverted_index.also | 189 |
| abstract_inverted_index.data | 186 |
| abstract_inverted_index.full | 197 |
| abstract_inverted_index.have | 3 |
| abstract_inverted_index.show | 102, 156 |
| abstract_inverted_index.such | 65 |
| abstract_inverted_index.that | 103, 134, 157 |
| abstract_inverted_index.this | 125 |
| abstract_inverted_index.with | 61, 147 |
| abstract_inverted_index.(CVPR | 68 |
| abstract_inverted_index.2023) | 69 |
| abstract_inverted_index.MIMIR | 158, 168, 176 |
| abstract_inverted_index.ViTs, | 54 |
| abstract_inverted_index.While | 43 |
| abstract_inverted_index.image | 145 |
| abstract_inverted_index.might | 47 |
| abstract_inverted_index.novel | 89 |
| abstract_inverted_index.paper | 76 |
| abstract_inverted_index.serve | 10 |
| abstract_inverted_index.their | 19, 40 |
| abstract_inverted_index.where | 167, 193 |
| abstract_inverted_index.(SOTA) | 63 |
| abstract_inverted_index.(ViTs) | 2 |
| abstract_inverted_index.2024). | 74 |
| abstract_inverted_index.MIMIR, | 133 |
| abstract_inverted_index.Mutual | 91 |
| abstract_inverted_index.Vision | 0 |
| abstract_inverted_index.common | 184 |
| abstract_inverted_index.direct | 45 |
| abstract_inverted_index.latent | 111 |
| abstract_inverted_index.masked | 144 |
| abstract_inverted_index.modern | 15 |
| abstract_inverted_index.robust | 165 |
| abstract_inverted_index.should | 116 |
| abstract_inverted_index.unique | 41 |
| abstract_inverted_index.(USENIX | 72 |
| abstract_inverted_index.Despite | 18 |
| abstract_inverted_index.against | 180 |
| abstract_inverted_index.attacks | 182, 192 |
| abstract_inverted_index.between | 105 |
| abstract_inverted_index.bounds. | 122 |
| abstract_inverted_index.defense | 201 |
| abstract_inverted_index.derived | 120 |
| abstract_inverted_index.emerged | 4 |
| abstract_inverted_index.employs | 135 |
| abstract_inverted_index.evasion | 27 |
| abstract_inverted_index.example | 108 |
| abstract_inverted_index.exhibit | 23 |
| abstract_inverted_index.involve | 48 |
| abstract_inverted_index.method, | 132 |
| abstract_inverted_index.methods | 52 |
| abstract_inverted_index.models. | 17 |
| abstract_inverted_index.natural | 163 |
| abstract_inverted_index.notable | 24 |
| abstract_inverted_index.penalty | 138 |
| abstract_inverted_index.propose | 128 |
| abstract_inverted_index.provide | 161 |
| abstract_inverted_index.results | 172 |
| abstract_inverted_index.reveals | 57 |
| abstract_inverted_index.Building | 123 |
| abstract_inverted_index.Notably, | 175 |
| abstract_inverted_index.Security | 73 |
| abstract_inverted_index.Training | 35 |
| abstract_inverted_index.adaptive | 191 |
| abstract_inverted_index.analysis | 56, 94 |
| abstract_inverted_index.applying | 49 |
| abstract_inverted_index.attacks, | 28 |
| abstract_inverted_index.backbone | 13 |
| abstract_inverted_index.existing | 50 |
| abstract_inverted_index.improved | 162 |
| abstract_inverted_index.insight, | 126 |
| abstract_inverted_index.modeling | 146 |
| abstract_inverted_index.presents | 77 |
| abstract_inverted_index.provides | 87 |
| abstract_inverted_index.solution | 46 |
| abstract_inverted_index.superior | 178 |
| abstract_inverted_index.tailored | 38 |
| abstract_inverted_index.CIFAR-10, | 152 |
| abstract_inverted_index.Extensive | 149 |
| abstract_inverted_index.ViT-based | 114 |
| abstract_inverted_index.accuracy, | 166 |
| abstract_inverted_index.adversary | 195 |
| abstract_inverted_index.knowledge | 198 |
| abstract_inverted_index.possesses | 196 |
| abstract_inverted_index.withstand | 190 |
| abstract_inverted_index.Generalist | 67 |
| abstract_inverted_index.approaches | 64 |
| abstract_inverted_index.corruption | 185 |
| abstract_inverted_index.facilitate | 140 |
| abstract_inverted_index.impressive | 20 |
| abstract_inverted_index.mechanism. | 202 |
| abstract_inverted_index.robustness | 83, 179 |
| abstract_inverted_index.strategies | 37 |
| abstract_inverted_index.systematic | 79 |
| abstract_inverted_index.unforeseen | 181 |
| abstract_inverted_index.Adversarial | 34 |
| abstract_inverted_index.ImageNet-1K | 155 |
| abstract_inverted_index.Information | 92 |
| abstract_inverted_index.adversarial | 82, 107, 141 |
| abstract_inverted_index.constrained | 118 |
| abstract_inverted_index.development | 31 |
| abstract_inverted_index.experiments | 150 |
| abstract_inverted_index.fundamental | 7 |
| abstract_inverted_index.outperforms | 169 |
| abstract_inverted_index.significant | 58 |
| abstract_inverted_index.specialized | 33 |
| abstract_inverted_index.theoretical | 90 |
| abstract_inverted_index.ImageNet-1K. | 174 |
| abstract_inverted_index.Transformers | 1 |
| abstract_inverted_index.architecture | 8 |
| abstract_inverted_index.autoencoders | 115 |
| abstract_inverted_index.consistently | 160 |
| abstract_inverted_index.demonstrates | 177 |
| abstract_inverted_index.particularly | 60 |
| abstract_inverted_index.performance, | 21 |
| abstract_inverted_index.pre-training | 142 |
| abstract_inverted_index.Specifically, | 100 |
| abstract_inverted_index.architecture. | 42 |
| abstract_inverted_index.autoencoders. | 148 |
| abstract_inverted_index.investigation | 80 |
| abstract_inverted_index.necessitating | 29 |
| abstract_inverted_index.pre-training. | 99 |
| abstract_inverted_index.vulnerability | 25 |
| abstract_inverted_index.Tiny-ImageNet, | 153 |
| abstract_inverted_index.representation | 112 |
| abstract_inverted_index.self-supervised | 98, 130 |
| abstract_inverted_index.vision-language | 16 |
| abstract_inverted_index.state-of-the-art | 62 |
| abstract_inverted_index.autoencoder-based | 97 |
| abstract_inverted_index.incompatibilities, | 59 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile |