Miniature Autonomy as One Important Testing Means in the Development of Machine Learning Methods for Autonomous Driving: How ML-based Autonomous Driving could be Realized on a 1:87 Scale Article Swipe
YOU?
·
· 2019
· Open Access
·
· DOI: https://doi.org/10.5220/0007955704830488
In the current state of autonomous driving machine learning methods are dominating, especially for the environment recognition. For such solutions, the reliability and the robustness is a critical question. A “miniature autonomy” with model vehicles at a small scale could be beneficial for different reasons. Examples are (1) the testability of dangerous and close-to-crash edge cases, (2) the possibility to test potentially dangerous concepts as end-to-end learning or combined inference and learning phases, (3) the need to optimize algorithms thoroughly, and (4) a potential reduction of test mile counts. Presented is the motivation for miniature autonomy and a discussion of testing of machine learning methods. Finally, two currently set up platforms including one with an FPGA-based TPU for ML acceleration are described.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.5220/0007955704830488
- OA Status
- gold
- Cited By
- 4
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W2968926718
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W2968926718Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.5220/0007955704830488Digital Object Identifier
- Title
-
Miniature Autonomy as One Important Testing Means in the Development of Machine Learning Methods for Autonomous Driving: How ML-based Autonomous Driving could be Realized on a 1:87 ScaleWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2019Year of publication
- Publication date
-
2019-01-01Full publication date if available
- Authors
-
Tim Tiedemann, Jonas Fuhrmann, Sebastian Paulsen, Thorben Schnirpel, Nils Schönherr, Bettina Buth, Stephan PareigisList of authors in order
- Landing page
-
https://doi.org/10.5220/0007955704830488Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.5220/0007955704830488Direct OA link when available
- Concepts
-
Robustness (evolution), Computer science, Machine learning, Artificial intelligence, Testability, Inference, Crash, Test set, Embedded system, Reliability engineering, Engineering, Chemistry, Biochemistry, Gene, Programming languageTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
4Total citation count in OpenAlex
- Citations by year (recent)
-
2023: 1, 2021: 1, 2020: 1, 2019: 1Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W2968926718 |
|---|---|
| doi | https://doi.org/10.5220/0007955704830488 |
| ids.doi | https://doi.org/10.5220/0007955704830488 |
| ids.mag | 2968926718 |
| ids.openalex | https://openalex.org/W2968926718 |
| fwci | 0.46085324 |
| type | article |
| title | Miniature Autonomy as One Important Testing Means in the Development of Machine Learning Methods for Autonomous Driving: How ML-based Autonomous Driving could be Realized on a 1:87 Scale |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | 488 |
| biblio.first_page | 483 |
| topics[0].id | https://openalex.org/T11689 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9919999837875366 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Adversarial Robustness in Machine Learning |
| topics[1].id | https://openalex.org/T10036 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9746000170707703 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1707 |
| topics[1].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[1].display_name | Advanced Neural Network Applications |
| topics[2].id | https://openalex.org/T11099 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9696999788284302 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2203 |
| topics[2].subfield.display_name | Automotive Engineering |
| topics[2].display_name | Autonomous Vehicle Technology and Safety |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C63479239 |
| concepts[0].level | 3 |
| concepts[0].score | 0.6682412028312683 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q7353546 |
| concepts[0].display_name | Robustness (evolution) |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.629540205001831 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C119857082 |
| concepts[2].level | 1 |
| concepts[2].score | 0.6084716320037842 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[2].display_name | Machine learning |
| concepts[3].id | https://openalex.org/C154945302 |
| concepts[3].level | 1 |
| concepts[3].score | 0.5206322073936462 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[3].display_name | Artificial intelligence |
| concepts[4].id | https://openalex.org/C51234621 |
| concepts[4].level | 2 |
| concepts[4].score | 0.4552709758281708 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q2149495 |
| concepts[4].display_name | Testability |
| concepts[5].id | https://openalex.org/C2776214188 |
| concepts[5].level | 2 |
| concepts[5].score | 0.4417259395122528 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q408386 |
| concepts[5].display_name | Inference |
| concepts[6].id | https://openalex.org/C183469790 |
| concepts[6].level | 2 |
| concepts[6].score | 0.43508705496788025 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q333501 |
| concepts[6].display_name | Crash |
| concepts[7].id | https://openalex.org/C169903167 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4332144260406494 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q3985153 |
| concepts[7].display_name | Test set |
| concepts[8].id | https://openalex.org/C149635348 |
| concepts[8].level | 1 |
| concepts[8].score | 0.36025404930114746 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q193040 |
| concepts[8].display_name | Embedded system |
| concepts[9].id | https://openalex.org/C200601418 |
| concepts[9].level | 1 |
| concepts[9].score | 0.3600364923477173 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q2193887 |
| concepts[9].display_name | Reliability engineering |
| concepts[10].id | https://openalex.org/C127413603 |
| concepts[10].level | 0 |
| concepts[10].score | 0.25455692410469055 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[10].display_name | Engineering |
| concepts[11].id | https://openalex.org/C185592680 |
| concepts[11].level | 0 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q2329 |
| concepts[11].display_name | Chemistry |
| concepts[12].id | https://openalex.org/C55493867 |
| concepts[12].level | 1 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q7094 |
| concepts[12].display_name | Biochemistry |
| concepts[13].id | https://openalex.org/C104317684 |
| concepts[13].level | 2 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q7187 |
| concepts[13].display_name | Gene |
| concepts[14].id | https://openalex.org/C199360897 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[14].display_name | Programming language |
| keywords[0].id | https://openalex.org/keywords/robustness |
| keywords[0].score | 0.6682412028312683 |
| keywords[0].display_name | Robustness (evolution) |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.629540205001831 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/machine-learning |
| keywords[2].score | 0.6084716320037842 |
| keywords[2].display_name | Machine learning |
| keywords[3].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[3].score | 0.5206322073936462 |
| keywords[3].display_name | Artificial intelligence |
| keywords[4].id | https://openalex.org/keywords/testability |
| keywords[4].score | 0.4552709758281708 |
| keywords[4].display_name | Testability |
| keywords[5].id | https://openalex.org/keywords/inference |
| keywords[5].score | 0.4417259395122528 |
| keywords[5].display_name | Inference |
| keywords[6].id | https://openalex.org/keywords/crash |
| keywords[6].score | 0.43508705496788025 |
| keywords[6].display_name | Crash |
| keywords[7].id | https://openalex.org/keywords/test-set |
| keywords[7].score | 0.4332144260406494 |
| keywords[7].display_name | Test set |
| keywords[8].id | https://openalex.org/keywords/embedded-system |
| keywords[8].score | 0.36025404930114746 |
| keywords[8].display_name | Embedded system |
| keywords[9].id | https://openalex.org/keywords/reliability-engineering |
| keywords[9].score | 0.3600364923477173 |
| keywords[9].display_name | Reliability engineering |
| keywords[10].id | https://openalex.org/keywords/engineering |
| keywords[10].score | 0.25455692410469055 |
| keywords[10].display_name | Engineering |
| language | en |
| locations[0].id | doi:10.5220/0007955704830488 |
| locations[0].is_oa | True |
| locations[0].source | |
| locations[0].license | cc-by-nc-nd |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | proceedings-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc-nd |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Proceedings of the 16th International Conference on Informatics in Control, Automation and Robotics |
| locations[0].landing_page_url | https://doi.org/10.5220/0007955704830488 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5038578099 |
| authorships[0].author.orcid | https://orcid.org/0009-0005-3517-5606 |
| authorships[0].author.display_name | Tim Tiedemann |
| authorships[0].countries | DE |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I70451448 |
| authorships[0].affiliations[0].raw_affiliation_string | Department CS, University of Applied Sciences Hamburg, Berliner Tor 7, Hamburg and Germany, --- Select a Country --- |
| authorships[0].institutions[0].id | https://openalex.org/I70451448 |
| authorships[0].institutions[0].ror | https://ror.org/00fkqwx76 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I70451448 |
| authorships[0].institutions[0].country_code | DE |
| authorships[0].institutions[0].display_name | HAW Hamburg |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Tim Tiedemann |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department CS, University of Applied Sciences Hamburg, Berliner Tor 7, Hamburg and Germany, --- Select a Country --- |
| authorships[1].author.id | https://openalex.org/A5062449630 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Jonas Fuhrmann |
| authorships[1].countries | DE |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I70451448 |
| authorships[1].affiliations[0].raw_affiliation_string | Department CS, University of Applied Sciences Hamburg, Berliner Tor 7, Hamburg and Germany, --- Select a Country --- |
| authorships[1].institutions[0].id | https://openalex.org/I70451448 |
| authorships[1].institutions[0].ror | https://ror.org/00fkqwx76 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I70451448 |
| authorships[1].institutions[0].country_code | DE |
| authorships[1].institutions[0].display_name | HAW Hamburg |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Jonas Fuhrmann |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department CS, University of Applied Sciences Hamburg, Berliner Tor 7, Hamburg and Germany, --- Select a Country --- |
| authorships[2].author.id | https://openalex.org/A5025855352 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Sebastian Paulsen |
| authorships[2].countries | DE |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I70451448 |
| authorships[2].affiliations[0].raw_affiliation_string | Department CS, University of Applied Sciences Hamburg, Berliner Tor 7, Hamburg and Germany, --- Select a Country --- |
| authorships[2].institutions[0].id | https://openalex.org/I70451448 |
| authorships[2].institutions[0].ror | https://ror.org/00fkqwx76 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I70451448 |
| authorships[2].institutions[0].country_code | DE |
| authorships[2].institutions[0].display_name | HAW Hamburg |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Sebastian Paulsen |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department CS, University of Applied Sciences Hamburg, Berliner Tor 7, Hamburg and Germany, --- Select a Country --- |
| authorships[3].author.id | https://openalex.org/A5018346119 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Thorben Schnirpel |
| authorships[3].countries | DE |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I70451448 |
| authorships[3].affiliations[0].raw_affiliation_string | Department CS, University of Applied Sciences Hamburg, Berliner Tor 7, Hamburg and Germany, --- Select a Country --- |
| authorships[3].institutions[0].id | https://openalex.org/I70451448 |
| authorships[3].institutions[0].ror | https://ror.org/00fkqwx76 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I70451448 |
| authorships[3].institutions[0].country_code | DE |
| authorships[3].institutions[0].display_name | HAW Hamburg |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Thorben Schnirpel |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Department CS, University of Applied Sciences Hamburg, Berliner Tor 7, Hamburg and Germany, --- Select a Country --- |
| authorships[4].author.id | https://openalex.org/A5090428190 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Nils Schönherr |
| authorships[4].countries | DE |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I70451448 |
| authorships[4].affiliations[0].raw_affiliation_string | Department CS, University of Applied Sciences Hamburg, Berliner Tor 7, Hamburg and Germany, --- Select a Country --- |
| authorships[4].institutions[0].id | https://openalex.org/I70451448 |
| authorships[4].institutions[0].ror | https://ror.org/00fkqwx76 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I70451448 |
| authorships[4].institutions[0].country_code | DE |
| authorships[4].institutions[0].display_name | HAW Hamburg |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Nils Schönherr |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Department CS, University of Applied Sciences Hamburg, Berliner Tor 7, Hamburg and Germany, --- Select a Country --- |
| authorships[5].author.id | https://openalex.org/A5071959159 |
| authorships[5].author.orcid | |
| authorships[5].author.display_name | Bettina Buth |
| authorships[5].countries | DE |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I70451448 |
| authorships[5].affiliations[0].raw_affiliation_string | Department CS, University of Applied Sciences Hamburg, Berliner Tor 7, Hamburg and Germany, --- Select a Country --- |
| authorships[5].institutions[0].id | https://openalex.org/I70451448 |
| authorships[5].institutions[0].ror | https://ror.org/00fkqwx76 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I70451448 |
| authorships[5].institutions[0].country_code | DE |
| authorships[5].institutions[0].display_name | HAW Hamburg |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Bettina Buth |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Department CS, University of Applied Sciences Hamburg, Berliner Tor 7, Hamburg and Germany, --- Select a Country --- |
| authorships[6].author.id | https://openalex.org/A5056144539 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-7238-0976 |
| authorships[6].author.display_name | Stephan Pareigis |
| authorships[6].countries | DE |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I70451448 |
| authorships[6].affiliations[0].raw_affiliation_string | Department CS, University of Applied Sciences Hamburg, Berliner Tor 7, Hamburg and Germany, --- Select a Country --- |
| authorships[6].institutions[0].id | https://openalex.org/I70451448 |
| authorships[6].institutions[0].ror | https://ror.org/00fkqwx76 |
| authorships[6].institutions[0].type | education |
| authorships[6].institutions[0].lineage | https://openalex.org/I70451448 |
| authorships[6].institutions[0].country_code | DE |
| authorships[6].institutions[0].display_name | HAW Hamburg |
| authorships[6].author_position | last |
| authorships[6].raw_author_name | Stephan Pareigis |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | Department CS, University of Applied Sciences Hamburg, Berliner Tor 7, Hamburg and Germany, --- Select a Country --- |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.5220/0007955704830488 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Miniature Autonomy as One Important Testing Means in the Development of Machine Learning Methods for Autonomous Driving: How ML-based Autonomous Driving could be Realized on a 1:87 Scale |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11689 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9919999837875366 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Adversarial Robustness in Machine Learning |
| related_works | https://openalex.org/W2393524141, https://openalex.org/W2365130684, https://openalex.org/W2370255574, https://openalex.org/W2026516036, https://openalex.org/W2169676947, https://openalex.org/W2906367154, https://openalex.org/W2106502108, https://openalex.org/W2783560053, https://openalex.org/W626940945, https://openalex.org/W2098899017 |
| cited_by_count | 4 |
| counts_by_year[0].year | 2023 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2021 |
| counts_by_year[1].cited_by_count | 1 |
| counts_by_year[2].year | 2020 |
| counts_by_year[2].cited_by_count | 1 |
| counts_by_year[3].year | 2019 |
| counts_by_year[3].cited_by_count | 1 |
| locations_count | 1 |
| best_oa_location.id | doi:10.5220/0007955704830488 |
| best_oa_location.is_oa | True |
| best_oa_location.source | |
| best_oa_location.license | cc-by-nc-nd |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | proceedings-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Proceedings of the 16th International Conference on Informatics in Control, Automation and Robotics |
| best_oa_location.landing_page_url | https://doi.org/10.5220/0007955704830488 |
| primary_location.id | doi:10.5220/0007955704830488 |
| primary_location.is_oa | True |
| primary_location.source | |
| primary_location.license | cc-by-nc-nd |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | proceedings-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Proceedings of the 16th International Conference on Informatics in Control, Automation and Robotics |
| primary_location.landing_page_url | https://doi.org/10.5220/0007955704830488 |
| publication_date | 2019-01-01 |
| publication_year | 2019 |
| referenced_works_count | 0 |
| abstract_inverted_index.A | 29 |
| abstract_inverted_index.a | 26, 36, 82, 97 |
| abstract_inverted_index.In | 0 |
| abstract_inverted_index.ML | 118 |
| abstract_inverted_index.an | 114 |
| abstract_inverted_index.as | 64 |
| abstract_inverted_index.at | 35 |
| abstract_inverted_index.be | 40 |
| abstract_inverted_index.is | 25, 90 |
| abstract_inverted_index.of | 4, 50, 85, 99, 101 |
| abstract_inverted_index.or | 67 |
| abstract_inverted_index.to | 59, 76 |
| abstract_inverted_index.up | 109 |
| abstract_inverted_index.(1) | 47 |
| abstract_inverted_index.(2) | 56 |
| abstract_inverted_index.(3) | 73 |
| abstract_inverted_index.(4) | 81 |
| abstract_inverted_index.For | 17 |
| abstract_inverted_index.TPU | 116 |
| abstract_inverted_index.and | 22, 52, 70, 80, 96 |
| abstract_inverted_index.are | 10, 46, 120 |
| abstract_inverted_index.for | 13, 42, 93, 117 |
| abstract_inverted_index.one | 112 |
| abstract_inverted_index.set | 108 |
| abstract_inverted_index.the | 1, 14, 20, 23, 48, 57, 74, 91 |
| abstract_inverted_index.two | 106 |
| abstract_inverted_index.edge | 54 |
| abstract_inverted_index.mile | 87 |
| abstract_inverted_index.need | 75 |
| abstract_inverted_index.such | 18 |
| abstract_inverted_index.test | 60, 86 |
| abstract_inverted_index.with | 32, 113 |
| abstract_inverted_index.could | 39 |
| abstract_inverted_index.model | 33 |
| abstract_inverted_index.scale | 38 |
| abstract_inverted_index.small | 37 |
| abstract_inverted_index.state | 3 |
| abstract_inverted_index.cases, | 55 |
| abstract_inverted_index.counts. | 88 |
| abstract_inverted_index.current | 2 |
| abstract_inverted_index.driving | 6 |
| abstract_inverted_index.machine | 7, 102 |
| abstract_inverted_index.methods | 9 |
| abstract_inverted_index.phases, | 72 |
| abstract_inverted_index.testing | 100 |
| abstract_inverted_index.Examples | 45 |
| abstract_inverted_index.Finally, | 105 |
| abstract_inverted_index.autonomy | 95 |
| abstract_inverted_index.combined | 68 |
| abstract_inverted_index.concepts | 63 |
| abstract_inverted_index.critical | 27 |
| abstract_inverted_index.learning | 8, 66, 71, 103 |
| abstract_inverted_index.methods. | 104 |
| abstract_inverted_index.optimize | 77 |
| abstract_inverted_index.reasons. | 44 |
| abstract_inverted_index.vehicles | 34 |
| abstract_inverted_index.Presented | 89 |
| abstract_inverted_index.currently | 107 |
| abstract_inverted_index.dangerous | 51, 62 |
| abstract_inverted_index.different | 43 |
| abstract_inverted_index.including | 111 |
| abstract_inverted_index.inference | 69 |
| abstract_inverted_index.miniature | 94 |
| abstract_inverted_index.platforms | 110 |
| abstract_inverted_index.potential | 83 |
| abstract_inverted_index.question. | 28 |
| abstract_inverted_index.reduction | 84 |
| abstract_inverted_index.FPGA-based | 115 |
| abstract_inverted_index.algorithms | 78 |
| abstract_inverted_index.autonomous | 5 |
| abstract_inverted_index.beneficial | 41 |
| abstract_inverted_index.described. | 121 |
| abstract_inverted_index.discussion | 98 |
| abstract_inverted_index.end-to-end | 65 |
| abstract_inverted_index.especially | 12 |
| abstract_inverted_index.motivation | 92 |
| abstract_inverted_index.robustness | 24 |
| abstract_inverted_index.solutions, | 19 |
| abstract_inverted_index.autonomy” | 31 |
| abstract_inverted_index.dominating, | 11 |
| abstract_inverted_index.environment | 15 |
| abstract_inverted_index.possibility | 58 |
| abstract_inverted_index.potentially | 61 |
| abstract_inverted_index.reliability | 21 |
| abstract_inverted_index.testability | 49 |
| abstract_inverted_index.thoroughly, | 79 |
| abstract_inverted_index.acceleration | 119 |
| abstract_inverted_index.recognition. | 16 |
| abstract_inverted_index.“miniature | 30 |
| abstract_inverted_index.close-to-crash | 53 |
| cited_by_percentile_year.max | 94 |
| cited_by_percentile_year.min | 89 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 7 |
| citation_normalized_percentile.value | 0.71566909 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |