Miniaturized NIRS Coupled with Machine Learning Algorithm for Noninvasively Quantifying Gluten Quality in Wheat Flour Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.3390/foods14132393
This research implemented a miniaturized near-infrared spectroscopy (NIRS) system integrated with machine learning approaches for the quantitative evaluation of dry gluten content (DGC), wet gluten content (WGC), and the gluten index (GI) in wheat flour in a noninvasive manner. Five different algorithms were employed to mine the relationship between the full-range spectra (900–1700 nm) and three parameters, with support vector regression (SVR) demonstrating the best prediction performance for all gluten parameters (RP = 0.9370–0.9430, RMSEP = 0.3450–0.4043%, and RPD = 3.1348–3.4998). Through a comparative evaluation of five wavelength selection techniques, 25–30 optimal wavelengths were identified, enabling the development of optimized SVR models. The improved whale optimization algorithm iWOA-based SVR (iWOA-SVR) model exhibited the strongest predictive capability among the five optimal wavelengths-based models, achieving comparable accuracy to the full-range spectra SVR for all gluten parameters (RP = 0.9190–0.9385, RMSEP = 0.3927–0.5743%, and RPD = 3.0424–3.2509). The model’s robustness was confirmed through external validation and statistical analyses (p > 0.05 for F-test and t-test). The results highlight the effectiveness of micro-NIRS combined with iWOA-SVR for the nondestructive gluten quality assessment of wheat flour, providing a more valuable reference for expanding the use of NIRS technology and developing portable specialized NIRS equipment for industrial-level applications in the future.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3390/foods14132393
- https://www.mdpi.com/2304-8158/14/13/2393/pdf?version=1751948403
- OA Status
- gold
- References
- 40
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4412093537
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4412093537Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/foods14132393Digital Object Identifier
- Title
-
Miniaturized NIRS Coupled with Machine Learning Algorithm for Noninvasively Quantifying Gluten Quality in Wheat FlourWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-07-07Full publication date if available
- Authors
-
Yuling Wang, Chen Zhang, Xin‐Hua Li, Longzhu Xing, M. Lv, Hong-Ju He, Leiqing Pan, Xingqi OuList of authors in order
- Landing page
-
https://doi.org/10.3390/foods14132393Publisher landing page
- PDF URL
-
https://www.mdpi.com/2304-8158/14/13/2393/pdf?version=1751948403Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.mdpi.com/2304-8158/14/13/2393/pdf?version=1751948403Direct OA link when available
- Concepts
-
Gluten, Wheat gluten, Quality (philosophy), Computer science, Algorithm, Machine learning, Artificial intelligence, Food science, Chemistry, Physics, Quantum mechanicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
40Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4412093537 |
|---|---|
| doi | https://doi.org/10.3390/foods14132393 |
| ids.doi | https://doi.org/10.3390/foods14132393 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/40647145 |
| ids.openalex | https://openalex.org/W4412093537 |
| fwci | 0.0 |
| type | article |
| title | Miniaturized NIRS Coupled with Machine Learning Algorithm for Noninvasively Quantifying Gluten Quality in Wheat Flour |
| biblio.issue | 13 |
| biblio.volume | 14 |
| biblio.last_page | 2393 |
| biblio.first_page | 2393 |
| topics[0].id | https://openalex.org/T10640 |
| topics[0].field.id | https://openalex.org/fields/16 |
| topics[0].field.display_name | Chemistry |
| topics[0].score | 0.9994999766349792 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1602 |
| topics[0].subfield.display_name | Analytical Chemistry |
| topics[0].display_name | Spectroscopy and Chemometric Analyses |
| topics[1].id | https://openalex.org/T10333 |
| topics[1].field.id | https://openalex.org/fields/11 |
| topics[1].field.display_name | Agricultural and Biological Sciences |
| topics[1].score | 0.9789999723434448 |
| topics[1].domain.id | https://openalex.org/domains/1 |
| topics[1].domain.display_name | Life Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1103 |
| topics[1].subfield.display_name | Animal Science and Zoology |
| topics[1].display_name | Meat and Animal Product Quality |
| topics[2].id | https://openalex.org/T11667 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9603000283241272 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2204 |
| topics[2].subfield.display_name | Biomedical Engineering |
| topics[2].display_name | Advanced Chemical Sensor Technologies |
| is_xpac | False |
| apc_list.value | 2200 |
| apc_list.currency | CHF |
| apc_list.value_usd | 2382 |
| apc_paid.value | 2200 |
| apc_paid.currency | CHF |
| apc_paid.value_usd | 2382 |
| concepts[0].id | https://openalex.org/C2776336767 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6464430093765259 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q188251 |
| concepts[0].display_name | Gluten |
| concepts[1].id | https://openalex.org/C3019037309 |
| concepts[1].level | 3 |
| concepts[1].score | 0.5240504741668701 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q188251 |
| concepts[1].display_name | Wheat gluten |
| concepts[2].id | https://openalex.org/C2779530757 |
| concepts[2].level | 2 |
| concepts[2].score | 0.4978468418121338 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q1207505 |
| concepts[2].display_name | Quality (philosophy) |
| concepts[3].id | https://openalex.org/C41008148 |
| concepts[3].level | 0 |
| concepts[3].score | 0.4043455123901367 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[3].display_name | Computer science |
| concepts[4].id | https://openalex.org/C11413529 |
| concepts[4].level | 1 |
| concepts[4].score | 0.39831340312957764 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[4].display_name | Algorithm |
| concepts[5].id | https://openalex.org/C119857082 |
| concepts[5].level | 1 |
| concepts[5].score | 0.3926119804382324 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[5].display_name | Machine learning |
| concepts[6].id | https://openalex.org/C154945302 |
| concepts[6].level | 1 |
| concepts[6].score | 0.3743586242198944 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[6].display_name | Artificial intelligence |
| concepts[7].id | https://openalex.org/C31903555 |
| concepts[7].level | 1 |
| concepts[7].score | 0.31238701939582825 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q1637030 |
| concepts[7].display_name | Food science |
| concepts[8].id | https://openalex.org/C185592680 |
| concepts[8].level | 0 |
| concepts[8].score | 0.251320481300354 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q2329 |
| concepts[8].display_name | Chemistry |
| concepts[9].id | https://openalex.org/C121332964 |
| concepts[9].level | 0 |
| concepts[9].score | 0.08627909421920776 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[9].display_name | Physics |
| concepts[10].id | https://openalex.org/C62520636 |
| concepts[10].level | 1 |
| concepts[10].score | 0.0 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[10].display_name | Quantum mechanics |
| keywords[0].id | https://openalex.org/keywords/gluten |
| keywords[0].score | 0.6464430093765259 |
| keywords[0].display_name | Gluten |
| keywords[1].id | https://openalex.org/keywords/wheat-gluten |
| keywords[1].score | 0.5240504741668701 |
| keywords[1].display_name | Wheat gluten |
| keywords[2].id | https://openalex.org/keywords/quality |
| keywords[2].score | 0.4978468418121338 |
| keywords[2].display_name | Quality (philosophy) |
| keywords[3].id | https://openalex.org/keywords/computer-science |
| keywords[3].score | 0.4043455123901367 |
| keywords[3].display_name | Computer science |
| keywords[4].id | https://openalex.org/keywords/algorithm |
| keywords[4].score | 0.39831340312957764 |
| keywords[4].display_name | Algorithm |
| keywords[5].id | https://openalex.org/keywords/machine-learning |
| keywords[5].score | 0.3926119804382324 |
| keywords[5].display_name | Machine learning |
| keywords[6].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[6].score | 0.3743586242198944 |
| keywords[6].display_name | Artificial intelligence |
| keywords[7].id | https://openalex.org/keywords/food-science |
| keywords[7].score | 0.31238701939582825 |
| keywords[7].display_name | Food science |
| keywords[8].id | https://openalex.org/keywords/chemistry |
| keywords[8].score | 0.251320481300354 |
| keywords[8].display_name | Chemistry |
| keywords[9].id | https://openalex.org/keywords/physics |
| keywords[9].score | 0.08627909421920776 |
| keywords[9].display_name | Physics |
| language | en |
| locations[0].id | doi:10.3390/foods14132393 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2737939966 |
| locations[0].source.issn | 2304-8158 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2304-8158 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Foods |
| locations[0].source.host_organization | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.mdpi.com/2304-8158/14/13/2393/pdf?version=1751948403 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Foods |
| locations[0].landing_page_url | https://doi.org/10.3390/foods14132393 |
| locations[1].id | pmid:40647145 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Foods (Basel, Switzerland) |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/40647145 |
| locations[2].id | pmh:oai:doaj.org/article:7130a56cf9d241cf85ba27601d6e351b |
| locations[2].is_oa | False |
| locations[2].source.id | https://openalex.org/S4306401280 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[2].source.host_organization | |
| locations[2].source.host_organization_name | |
| locations[2].source.host_organization_lineage | |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | article |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Foods, Vol 14, Iss 13, p 2393 (2025) |
| locations[2].landing_page_url | https://doaj.org/article/7130a56cf9d241cf85ba27601d6e351b |
| locations[3].id | pmh:oai:pubmedcentral.nih.gov:12248474 |
| locations[3].is_oa | True |
| locations[3].source.id | https://openalex.org/S2764455111 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | False |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | PubMed Central |
| locations[3].source.host_organization | https://openalex.org/I1299303238 |
| locations[3].source.host_organization_name | National Institutes of Health |
| locations[3].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[3].license | other-oa |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | Text |
| locations[3].license_id | https://openalex.org/licenses/other-oa |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | Foods |
| locations[3].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/12248474 |
| indexed_in | crossref, doaj, pubmed |
| authorships[0].author.id | https://openalex.org/A5100726275 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-3627-7397 |
| authorships[0].author.display_name | Yuling Wang |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I4210163247 |
| authorships[0].affiliations[0].raw_affiliation_string | School of Agriculture, Henan Institute of Science and Technology, Xinxiang 453003, China |
| authorships[0].institutions[0].id | https://openalex.org/I4210163247 |
| authorships[0].institutions[0].ror | https://ror.org/0578f1k82 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I4210163247 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Henan Institute of Science and Technology |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Yuling Wang |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | School of Agriculture, Henan Institute of Science and Technology, Xinxiang 453003, China |
| authorships[1].author.id | https://openalex.org/A5100374068 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-8116-9841 |
| authorships[1].author.display_name | Chen Zhang |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I4210165883 |
| authorships[1].affiliations[0].raw_affiliation_string | School of Information Engineering, Xinxiang Institute of Engineering, Xinxiang 453700, China |
| authorships[1].institutions[0].id | https://openalex.org/I4210165883 |
| authorships[1].institutions[0].ror | https://ror.org/05qvskn85 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I4210165883 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Xinxiang University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Chen Zhang |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | School of Information Engineering, Xinxiang Institute of Engineering, Xinxiang 453700, China |
| authorships[2].author.id | https://openalex.org/A5100640704 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-9485-029X |
| authorships[2].author.display_name | Xin‐Hua Li |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I4210163247 |
| authorships[2].affiliations[0].raw_affiliation_string | School of Agriculture, Henan Institute of Science and Technology, Xinxiang 453003, China |
| authorships[2].institutions[0].id | https://openalex.org/I4210163247 |
| authorships[2].institutions[0].ror | https://ror.org/0578f1k82 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I4210163247 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Henan Institute of Science and Technology |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Xinhua Li |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | School of Agriculture, Henan Institute of Science and Technology, Xinxiang 453003, China |
| authorships[3].author.id | https://openalex.org/A5101349638 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Longzhu Xing |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I4210163247 |
| authorships[3].affiliations[0].raw_affiliation_string | School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, China |
| authorships[3].institutions[0].id | https://openalex.org/I4210163247 |
| authorships[3].institutions[0].ror | https://ror.org/0578f1k82 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I4210163247 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Henan Institute of Science and Technology |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Longzhu Xing |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, China |
| authorships[4].author.id | https://openalex.org/A5113348372 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | M. Lv |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I4210163247 |
| authorships[4].affiliations[0].raw_affiliation_string | School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, China |
| authorships[4].institutions[0].id | https://openalex.org/I4210163247 |
| authorships[4].institutions[0].ror | https://ror.org/0578f1k82 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I4210163247 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | Henan Institute of Science and Technology |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Mengchao Lv |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, China |
| authorships[5].author.id | https://openalex.org/A5100686798 |
| authorships[5].author.orcid | https://orcid.org/0000-0001-7112-5909 |
| authorships[5].author.display_name | Hong-Ju He |
| authorships[5].countries | CN |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I4210163247 |
| authorships[5].affiliations[0].raw_affiliation_string | School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, China |
| authorships[5].institutions[0].id | https://openalex.org/I4210163247 |
| authorships[5].institutions[0].ror | https://ror.org/0578f1k82 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I4210163247 |
| authorships[5].institutions[0].country_code | CN |
| authorships[5].institutions[0].display_name | Henan Institute of Science and Technology |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Hongju He |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, China |
| authorships[6].author.id | https://openalex.org/A5081138818 |
| authorships[6].author.orcid | https://orcid.org/0000-0001-5587-3544 |
| authorships[6].author.display_name | Leiqing Pan |
| authorships[6].countries | CN |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I119454577 |
| authorships[6].affiliations[0].raw_affiliation_string | College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China |
| authorships[6].institutions[0].id | https://openalex.org/I119454577 |
| authorships[6].institutions[0].ror | https://ror.org/05td3s095 |
| authorships[6].institutions[0].type | education |
| authorships[6].institutions[0].lineage | https://openalex.org/I119454577 |
| authorships[6].institutions[0].country_code | CN |
| authorships[6].institutions[0].display_name | Nanjing Agricultural University |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Leiqing Pan |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China |
| authorships[7].author.id | https://openalex.org/A5016914458 |
| authorships[7].author.orcid | https://orcid.org/0000-0002-6752-9326 |
| authorships[7].author.display_name | Xingqi Ou |
| authorships[7].countries | CN |
| authorships[7].affiliations[0].institution_ids | https://openalex.org/I4210163247 |
| authorships[7].affiliations[0].raw_affiliation_string | School of Agriculture, Henan Institute of Science and Technology, Xinxiang 453003, China |
| authorships[7].institutions[0].id | https://openalex.org/I4210163247 |
| authorships[7].institutions[0].ror | https://ror.org/0578f1k82 |
| authorships[7].institutions[0].type | education |
| authorships[7].institutions[0].lineage | https://openalex.org/I4210163247 |
| authorships[7].institutions[0].country_code | CN |
| authorships[7].institutions[0].display_name | Henan Institute of Science and Technology |
| authorships[7].author_position | last |
| authorships[7].raw_author_name | Xingqi Ou |
| authorships[7].is_corresponding | False |
| authorships[7].raw_affiliation_strings | School of Agriculture, Henan Institute of Science and Technology, Xinxiang 453003, China |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.mdpi.com/2304-8158/14/13/2393/pdf?version=1751948403 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Miniaturized NIRS Coupled with Machine Learning Algorithm for Noninvasively Quantifying Gluten Quality in Wheat Flour |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10640 |
| primary_topic.field.id | https://openalex.org/fields/16 |
| primary_topic.field.display_name | Chemistry |
| primary_topic.score | 0.9994999766349792 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1602 |
| primary_topic.subfield.display_name | Analytical Chemistry |
| primary_topic.display_name | Spectroscopy and Chemometric Analyses |
| related_works | https://openalex.org/W4297987885, https://openalex.org/W2377194254, https://openalex.org/W2376986967, https://openalex.org/W4321477823, https://openalex.org/W2364476469, https://openalex.org/W2088715960, https://openalex.org/W2357184090, https://openalex.org/W4389287125, https://openalex.org/W1998201344, https://openalex.org/W2025351831 |
| cited_by_count | 0 |
| locations_count | 4 |
| best_oa_location.id | doi:10.3390/foods14132393 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2737939966 |
| best_oa_location.source.issn | 2304-8158 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2304-8158 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Foods |
| best_oa_location.source.host_organization | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.mdpi.com/2304-8158/14/13/2393/pdf?version=1751948403 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Foods |
| best_oa_location.landing_page_url | https://doi.org/10.3390/foods14132393 |
| primary_location.id | doi:10.3390/foods14132393 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2737939966 |
| primary_location.source.issn | 2304-8158 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2304-8158 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Foods |
| primary_location.source.host_organization | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.mdpi.com/2304-8158/14/13/2393/pdf?version=1751948403 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Foods |
| primary_location.landing_page_url | https://doi.org/10.3390/foods14132393 |
| publication_date | 2025-07-07 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W3044238662, https://openalex.org/W4292833564, https://openalex.org/W4400063055, https://openalex.org/W4400133075, https://openalex.org/W628409187, https://openalex.org/W1988131618, https://openalex.org/W4408328640, https://openalex.org/W4401236568, https://openalex.org/W4398252316, https://openalex.org/W4387878183, https://openalex.org/W4206712442, https://openalex.org/W3029672392, https://openalex.org/W6607710782, https://openalex.org/W2799946065, https://openalex.org/W2002145621, https://openalex.org/W4402572719, https://openalex.org/W4408072121, https://openalex.org/W4313468609, https://openalex.org/W3121297140, https://openalex.org/W4402330693, https://openalex.org/W4319166290, https://openalex.org/W1970940160, https://openalex.org/W4386600458, https://openalex.org/W4320487233, https://openalex.org/W4389546761, https://openalex.org/W429766147, https://openalex.org/W3161818215, https://openalex.org/W4406080942, https://openalex.org/W4410502609, https://openalex.org/W2118861376, https://openalex.org/W4322721331, https://openalex.org/W4409385093, https://openalex.org/W3127566209, https://openalex.org/W4293375749, https://openalex.org/W4390694147, https://openalex.org/W4408369643, https://openalex.org/W3211205988, https://openalex.org/W4313547158, https://openalex.org/W2789152424, https://openalex.org/W187854364 |
| referenced_works_count | 40 |
| abstract_inverted_index.= | 72, 75, 79, 135, 138, 142 |
| abstract_inverted_index.a | 3, 36, 82, 182 |
| abstract_inverted_index.(p | 155 |
| abstract_inverted_index.in | 32, 35, 202 |
| abstract_inverted_index.of | 18, 85, 98, 167, 178, 190 |
| abstract_inverted_index.to | 44, 125 |
| abstract_inverted_index.(RP | 71, 134 |
| abstract_inverted_index.RPD | 78, 141 |
| abstract_inverted_index.SVR | 100, 108, 129 |
| abstract_inverted_index.The | 102, 144, 162 |
| abstract_inverted_index.all | 68, 131 |
| abstract_inverted_index.and | 27, 54, 77, 140, 152, 160, 193 |
| abstract_inverted_index.dry | 19 |
| abstract_inverted_index.for | 14, 67, 130, 158, 172, 186, 199 |
| abstract_inverted_index.nm) | 53 |
| abstract_inverted_index.the | 15, 28, 46, 49, 63, 96, 112, 117, 126, 165, 173, 188, 203 |
| abstract_inverted_index.use | 189 |
| abstract_inverted_index.was | 147 |
| abstract_inverted_index.wet | 23 |
| abstract_inverted_index.> | 156 |
| abstract_inverted_index.(GI) | 31 |
| abstract_inverted_index.0.05 | 157 |
| abstract_inverted_index.Five | 39 |
| abstract_inverted_index.NIRS | 191, 197 |
| abstract_inverted_index.This | 0 |
| abstract_inverted_index.best | 64 |
| abstract_inverted_index.five | 86, 118 |
| abstract_inverted_index.mine | 45 |
| abstract_inverted_index.more | 183 |
| abstract_inverted_index.were | 42, 93 |
| abstract_inverted_index.with | 10, 57, 170 |
| abstract_inverted_index.(SVR) | 61 |
| abstract_inverted_index.RMSEP | 74, 137 |
| abstract_inverted_index.among | 116 |
| abstract_inverted_index.flour | 34 |
| abstract_inverted_index.index | 30 |
| abstract_inverted_index.model | 110 |
| abstract_inverted_index.three | 55 |
| abstract_inverted_index.whale | 104 |
| abstract_inverted_index.wheat | 33, 179 |
| abstract_inverted_index.(DGC), | 22 |
| abstract_inverted_index.(NIRS) | 7 |
| abstract_inverted_index.(WGC), | 26 |
| abstract_inverted_index.F-test | 159 |
| abstract_inverted_index.flour, | 180 |
| abstract_inverted_index.gluten | 20, 24, 29, 69, 132, 175 |
| abstract_inverted_index.system | 8 |
| abstract_inverted_index.vector | 59 |
| abstract_inverted_index.25–30 | 90 |
| abstract_inverted_index.Through | 81 |
| abstract_inverted_index.between | 48 |
| abstract_inverted_index.content | 21, 25 |
| abstract_inverted_index.future. | 204 |
| abstract_inverted_index.machine | 11 |
| abstract_inverted_index.manner. | 38 |
| abstract_inverted_index.models, | 121 |
| abstract_inverted_index.models. | 101 |
| abstract_inverted_index.optimal | 91, 119 |
| abstract_inverted_index.quality | 176 |
| abstract_inverted_index.results | 163 |
| abstract_inverted_index.spectra | 51, 128 |
| abstract_inverted_index.support | 58 |
| abstract_inverted_index.through | 149 |
| abstract_inverted_index.accuracy | 124 |
| abstract_inverted_index.analyses | 154 |
| abstract_inverted_index.combined | 169 |
| abstract_inverted_index.employed | 43 |
| abstract_inverted_index.enabling | 95 |
| abstract_inverted_index.external | 150 |
| abstract_inverted_index.iWOA-SVR | 171 |
| abstract_inverted_index.improved | 103 |
| abstract_inverted_index.learning | 12 |
| abstract_inverted_index.portable | 195 |
| abstract_inverted_index.research | 1 |
| abstract_inverted_index.t-test). | 161 |
| abstract_inverted_index.valuable | 184 |
| abstract_inverted_index.achieving | 122 |
| abstract_inverted_index.algorithm | 106 |
| abstract_inverted_index.confirmed | 148 |
| abstract_inverted_index.different | 40 |
| abstract_inverted_index.equipment | 198 |
| abstract_inverted_index.exhibited | 111 |
| abstract_inverted_index.expanding | 187 |
| abstract_inverted_index.highlight | 164 |
| abstract_inverted_index.model’s | 145 |
| abstract_inverted_index.optimized | 99 |
| abstract_inverted_index.providing | 181 |
| abstract_inverted_index.reference | 185 |
| abstract_inverted_index.selection | 88 |
| abstract_inverted_index.strongest | 113 |
| abstract_inverted_index.(iWOA-SVR) | 109 |
| abstract_inverted_index.algorithms | 41 |
| abstract_inverted_index.approaches | 13 |
| abstract_inverted_index.assessment | 177 |
| abstract_inverted_index.capability | 115 |
| abstract_inverted_index.comparable | 123 |
| abstract_inverted_index.developing | 194 |
| abstract_inverted_index.evaluation | 17, 84 |
| abstract_inverted_index.full-range | 50, 127 |
| abstract_inverted_index.iWOA-based | 107 |
| abstract_inverted_index.integrated | 9 |
| abstract_inverted_index.micro-NIRS | 168 |
| abstract_inverted_index.parameters | 70, 133 |
| abstract_inverted_index.prediction | 65 |
| abstract_inverted_index.predictive | 114 |
| abstract_inverted_index.regression | 60 |
| abstract_inverted_index.robustness | 146 |
| abstract_inverted_index.technology | 192 |
| abstract_inverted_index.validation | 151 |
| abstract_inverted_index.wavelength | 87 |
| abstract_inverted_index.(900–1700 | 52 |
| abstract_inverted_index.comparative | 83 |
| abstract_inverted_index.development | 97 |
| abstract_inverted_index.identified, | 94 |
| abstract_inverted_index.implemented | 2 |
| abstract_inverted_index.noninvasive | 37 |
| abstract_inverted_index.parameters, | 56 |
| abstract_inverted_index.performance | 66 |
| abstract_inverted_index.specialized | 196 |
| abstract_inverted_index.statistical | 153 |
| abstract_inverted_index.techniques, | 89 |
| abstract_inverted_index.wavelengths | 92 |
| abstract_inverted_index.applications | 201 |
| abstract_inverted_index.miniaturized | 4 |
| abstract_inverted_index.optimization | 105 |
| abstract_inverted_index.quantitative | 16 |
| abstract_inverted_index.relationship | 47 |
| abstract_inverted_index.spectroscopy | 6 |
| abstract_inverted_index.demonstrating | 62 |
| abstract_inverted_index.effectiveness | 166 |
| abstract_inverted_index.near-infrared | 5 |
| abstract_inverted_index.nondestructive | 174 |
| abstract_inverted_index.0.9190–0.9385, | 136 |
| abstract_inverted_index.0.9370–0.9430, | 73 |
| abstract_inverted_index.industrial-level | 200 |
| abstract_inverted_index.0.3450–0.4043%, | 76 |
| abstract_inverted_index.0.3927–0.5743%, | 139 |
| abstract_inverted_index.3.0424–3.2509). | 143 |
| abstract_inverted_index.3.1348–3.4998). | 80 |
| abstract_inverted_index.wavelengths-based | 120 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 8 |
| citation_normalized_percentile.value | 0.31842489 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |