Minimax AUC Fairness: Efficient Algorithm with Provable Convergence Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2208.10451
The use of machine learning models in consequential decision making often exacerbates societal inequity, in particular yielding disparate impact on members of marginalized groups defined by race and gender. The area under the ROC curve (AUC) is widely used to evaluate the performance of a scoring function in machine learning, but is studied in algorithmic fairness less than other performance metrics. Due to the pairwise nature of the AUC, defining an AUC-based group fairness metric is pairwise-dependent and may involve both \emph{intra-group} and \emph{inter-group} AUCs. Importantly, considering only one category of AUCs is not sufficient to mitigate unfairness in AUC optimization. In this paper, we propose a minimax learning and bias mitigation framework that incorporates both intra-group and inter-group AUCs while maintaining utility. Based on this Rawlsian framework, we design an efficient stochastic optimization algorithm and prove its convergence to the minimum group-level AUC. We conduct numerical experiments on both synthetic and real-world datasets to validate the effectiveness of the minimax framework and the proposed optimization algorithm.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2208.10451
- https://arxiv.org/pdf/2208.10451
- OA Status
- green
- Cited By
- 1
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4292945935
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4292945935Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2208.10451Digital Object Identifier
- Title
-
Minimax AUC Fairness: Efficient Algorithm with Provable ConvergenceWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-08-22Full publication date if available
- Authors
-
Zhenhuan Yang, Yan Lok Ko, Kush R. Varshney, Yiming YingList of authors in order
- Landing page
-
https://arxiv.org/abs/2208.10451Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2208.10451Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2208.10451Direct OA link when available
- Concepts
-
Minimax, Pairwise comparison, Metric (unit), Convergence (economics), Machine learning, Computer science, Mathematical optimization, Group (periodic table), Algorithm, Artificial intelligence, Mathematics, Economics, Operations management, Organic chemistry, Economic growth, ChemistryTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4292945935 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2208.10451 |
| ids.doi | https://doi.org/10.48550/arxiv.2208.10451 |
| ids.openalex | https://openalex.org/W4292945935 |
| fwci | |
| type | preprint |
| title | Minimax AUC Fairness: Efficient Algorithm with Provable Convergence |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10804 |
| topics[0].field.id | https://openalex.org/fields/20 |
| topics[0].field.display_name | Economics, Econometrics and Finance |
| topics[0].score | 0.8977000117301941 |
| topics[0].domain.id | https://openalex.org/domains/2 |
| topics[0].domain.display_name | Social Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2002 |
| topics[0].subfield.display_name | Economics and Econometrics |
| topics[0].display_name | Health Systems, Economic Evaluations, Quality of Life |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C149728462 |
| concepts[0].level | 2 |
| concepts[0].score | 0.811996340751648 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q751319 |
| concepts[0].display_name | Minimax |
| concepts[1].id | https://openalex.org/C184898388 |
| concepts[1].level | 2 |
| concepts[1].score | 0.8068627119064331 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1435712 |
| concepts[1].display_name | Pairwise comparison |
| concepts[2].id | https://openalex.org/C176217482 |
| concepts[2].level | 2 |
| concepts[2].score | 0.676213264465332 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q860554 |
| concepts[2].display_name | Metric (unit) |
| concepts[3].id | https://openalex.org/C2777303404 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5891419053077698 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q759757 |
| concepts[3].display_name | Convergence (economics) |
| concepts[4].id | https://openalex.org/C119857082 |
| concepts[4].level | 1 |
| concepts[4].score | 0.5603947639465332 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[4].display_name | Machine learning |
| concepts[5].id | https://openalex.org/C41008148 |
| concepts[5].level | 0 |
| concepts[5].score | 0.514381468296051 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[5].display_name | Computer science |
| concepts[6].id | https://openalex.org/C126255220 |
| concepts[6].level | 1 |
| concepts[6].score | 0.46335721015930176 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q141495 |
| concepts[6].display_name | Mathematical optimization |
| concepts[7].id | https://openalex.org/C2781311116 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4613059163093567 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q83306 |
| concepts[7].display_name | Group (periodic table) |
| concepts[8].id | https://openalex.org/C11413529 |
| concepts[8].level | 1 |
| concepts[8].score | 0.4532807469367981 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[8].display_name | Algorithm |
| concepts[9].id | https://openalex.org/C154945302 |
| concepts[9].level | 1 |
| concepts[9].score | 0.42229801416397095 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[9].display_name | Artificial intelligence |
| concepts[10].id | https://openalex.org/C33923547 |
| concepts[10].level | 0 |
| concepts[10].score | 0.4090229868888855 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[10].display_name | Mathematics |
| concepts[11].id | https://openalex.org/C162324750 |
| concepts[11].level | 0 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q8134 |
| concepts[11].display_name | Economics |
| concepts[12].id | https://openalex.org/C21547014 |
| concepts[12].level | 1 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q1423657 |
| concepts[12].display_name | Operations management |
| concepts[13].id | https://openalex.org/C178790620 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q11351 |
| concepts[13].display_name | Organic chemistry |
| concepts[14].id | https://openalex.org/C50522688 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q189833 |
| concepts[14].display_name | Economic growth |
| concepts[15].id | https://openalex.org/C185592680 |
| concepts[15].level | 0 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q2329 |
| concepts[15].display_name | Chemistry |
| keywords[0].id | https://openalex.org/keywords/minimax |
| keywords[0].score | 0.811996340751648 |
| keywords[0].display_name | Minimax |
| keywords[1].id | https://openalex.org/keywords/pairwise-comparison |
| keywords[1].score | 0.8068627119064331 |
| keywords[1].display_name | Pairwise comparison |
| keywords[2].id | https://openalex.org/keywords/metric |
| keywords[2].score | 0.676213264465332 |
| keywords[2].display_name | Metric (unit) |
| keywords[3].id | https://openalex.org/keywords/convergence |
| keywords[3].score | 0.5891419053077698 |
| keywords[3].display_name | Convergence (economics) |
| keywords[4].id | https://openalex.org/keywords/machine-learning |
| keywords[4].score | 0.5603947639465332 |
| keywords[4].display_name | Machine learning |
| keywords[5].id | https://openalex.org/keywords/computer-science |
| keywords[5].score | 0.514381468296051 |
| keywords[5].display_name | Computer science |
| keywords[6].id | https://openalex.org/keywords/mathematical-optimization |
| keywords[6].score | 0.46335721015930176 |
| keywords[6].display_name | Mathematical optimization |
| keywords[7].id | https://openalex.org/keywords/group |
| keywords[7].score | 0.4613059163093567 |
| keywords[7].display_name | Group (periodic table) |
| keywords[8].id | https://openalex.org/keywords/algorithm |
| keywords[8].score | 0.4532807469367981 |
| keywords[8].display_name | Algorithm |
| keywords[9].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[9].score | 0.42229801416397095 |
| keywords[9].display_name | Artificial intelligence |
| keywords[10].id | https://openalex.org/keywords/mathematics |
| keywords[10].score | 0.4090229868888855 |
| keywords[10].display_name | Mathematics |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2208.10451 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2208.10451 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2208.10451 |
| locations[1].id | doi:10.48550/arxiv.2208.10451 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2208.10451 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5028516299 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-8427-8979 |
| authorships[0].author.display_name | Zhenhuan Yang |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Yang, Zhenhuan |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5065980580 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Yan Lok Ko |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Ko, Yan Lok |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5015286159 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-7376-5536 |
| authorships[2].author.display_name | Kush R. Varshney |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Varshney, Kush R. |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5048960543 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Yiming Ying |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Ying, Yiming |
| authorships[3].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2208.10451 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Minimax AUC Fairness: Efficient Algorithm with Provable Convergence |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10804 |
| primary_topic.field.id | https://openalex.org/fields/20 |
| primary_topic.field.display_name | Economics, Econometrics and Finance |
| primary_topic.score | 0.8977000117301941 |
| primary_topic.domain.id | https://openalex.org/domains/2 |
| primary_topic.domain.display_name | Social Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2002 |
| primary_topic.subfield.display_name | Economics and Econometrics |
| primary_topic.display_name | Health Systems, Economic Evaluations, Quality of Life |
| related_works | https://openalex.org/W2487162673, https://openalex.org/W2793211469, https://openalex.org/W2016058626, https://openalex.org/W2474724840, https://openalex.org/W2949152769, https://openalex.org/W4372354731, https://openalex.org/W2807634898, https://openalex.org/W1692008701, https://openalex.org/W2942366970, https://openalex.org/W2894446834 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2208.10451 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2208.10451 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2208.10451 |
| primary_location.id | pmh:oai:arXiv.org:2208.10451 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2208.10451 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2208.10451 |
| publication_date | 2022-08-22 |
| publication_year | 2022 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 44, 106 |
| abstract_inverted_index.In | 101 |
| abstract_inverted_index.We | 144 |
| abstract_inverted_index.an | 70, 130 |
| abstract_inverted_index.by | 25 |
| abstract_inverted_index.in | 6, 14, 47, 53, 98 |
| abstract_inverted_index.is | 36, 51, 75, 92 |
| abstract_inverted_index.of | 2, 21, 43, 66, 90, 158 |
| abstract_inverted_index.on | 19, 124, 148 |
| abstract_inverted_index.to | 39, 62, 95, 139, 154 |
| abstract_inverted_index.we | 104, 128 |
| abstract_inverted_index.AUC | 99 |
| abstract_inverted_index.Due | 61 |
| abstract_inverted_index.ROC | 33 |
| abstract_inverted_index.The | 0, 29 |
| abstract_inverted_index.and | 27, 77, 82, 109, 117, 135, 151, 162 |
| abstract_inverted_index.but | 50 |
| abstract_inverted_index.its | 137 |
| abstract_inverted_index.may | 78 |
| abstract_inverted_index.not | 93 |
| abstract_inverted_index.one | 88 |
| abstract_inverted_index.the | 32, 41, 63, 67, 140, 156, 159, 163 |
| abstract_inverted_index.use | 1 |
| abstract_inverted_index.AUC, | 68 |
| abstract_inverted_index.AUC. | 143 |
| abstract_inverted_index.AUCs | 91, 119 |
| abstract_inverted_index.area | 30 |
| abstract_inverted_index.bias | 110 |
| abstract_inverted_index.both | 80, 115, 149 |
| abstract_inverted_index.less | 56 |
| abstract_inverted_index.only | 87 |
| abstract_inverted_index.race | 26 |
| abstract_inverted_index.than | 57 |
| abstract_inverted_index.that | 113 |
| abstract_inverted_index.this | 102, 125 |
| abstract_inverted_index.used | 38 |
| abstract_inverted_index.(AUC) | 35 |
| abstract_inverted_index.AUCs. | 84 |
| abstract_inverted_index.Based | 123 |
| abstract_inverted_index.curve | 34 |
| abstract_inverted_index.group | 72 |
| abstract_inverted_index.often | 10 |
| abstract_inverted_index.other | 58 |
| abstract_inverted_index.prove | 136 |
| abstract_inverted_index.under | 31 |
| abstract_inverted_index.while | 120 |
| abstract_inverted_index.design | 129 |
| abstract_inverted_index.groups | 23 |
| abstract_inverted_index.impact | 18 |
| abstract_inverted_index.making | 9 |
| abstract_inverted_index.metric | 74 |
| abstract_inverted_index.models | 5 |
| abstract_inverted_index.nature | 65 |
| abstract_inverted_index.paper, | 103 |
| abstract_inverted_index.widely | 37 |
| abstract_inverted_index.conduct | 145 |
| abstract_inverted_index.defined | 24 |
| abstract_inverted_index.gender. | 28 |
| abstract_inverted_index.involve | 79 |
| abstract_inverted_index.machine | 3, 48 |
| abstract_inverted_index.members | 20 |
| abstract_inverted_index.minimax | 107, 160 |
| abstract_inverted_index.minimum | 141 |
| abstract_inverted_index.propose | 105 |
| abstract_inverted_index.scoring | 45 |
| abstract_inverted_index.studied | 52 |
| abstract_inverted_index.Rawlsian | 126 |
| abstract_inverted_index.category | 89 |
| abstract_inverted_index.datasets | 153 |
| abstract_inverted_index.decision | 8 |
| abstract_inverted_index.defining | 69 |
| abstract_inverted_index.evaluate | 40 |
| abstract_inverted_index.fairness | 55, 73 |
| abstract_inverted_index.function | 46 |
| abstract_inverted_index.learning | 4, 108 |
| abstract_inverted_index.metrics. | 60 |
| abstract_inverted_index.mitigate | 96 |
| abstract_inverted_index.pairwise | 64 |
| abstract_inverted_index.proposed | 164 |
| abstract_inverted_index.societal | 12 |
| abstract_inverted_index.utility. | 122 |
| abstract_inverted_index.validate | 155 |
| abstract_inverted_index.yielding | 16 |
| abstract_inverted_index.AUC-based | 71 |
| abstract_inverted_index.algorithm | 134 |
| abstract_inverted_index.disparate | 17 |
| abstract_inverted_index.efficient | 131 |
| abstract_inverted_index.framework | 112, 161 |
| abstract_inverted_index.inequity, | 13 |
| abstract_inverted_index.learning, | 49 |
| abstract_inverted_index.numerical | 146 |
| abstract_inverted_index.synthetic | 150 |
| abstract_inverted_index.algorithm. | 166 |
| abstract_inverted_index.framework, | 127 |
| abstract_inverted_index.mitigation | 111 |
| abstract_inverted_index.particular | 15 |
| abstract_inverted_index.real-world | 152 |
| abstract_inverted_index.stochastic | 132 |
| abstract_inverted_index.sufficient | 94 |
| abstract_inverted_index.unfairness | 97 |
| abstract_inverted_index.algorithmic | 54 |
| abstract_inverted_index.considering | 86 |
| abstract_inverted_index.convergence | 138 |
| abstract_inverted_index.exacerbates | 11 |
| abstract_inverted_index.experiments | 147 |
| abstract_inverted_index.group-level | 142 |
| abstract_inverted_index.inter-group | 118 |
| abstract_inverted_index.intra-group | 116 |
| abstract_inverted_index.maintaining | 121 |
| abstract_inverted_index.performance | 42, 59 |
| abstract_inverted_index.Importantly, | 85 |
| abstract_inverted_index.incorporates | 114 |
| abstract_inverted_index.marginalized | 22 |
| abstract_inverted_index.optimization | 133, 165 |
| abstract_inverted_index.consequential | 7 |
| abstract_inverted_index.effectiveness | 157 |
| abstract_inverted_index.optimization. | 100 |
| abstract_inverted_index.\emph{inter-group} | 83 |
| abstract_inverted_index.\emph{intra-group} | 81 |
| abstract_inverted_index.pairwise-dependent | 76 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 4 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/16 |
| sustainable_development_goals[0].score | 0.4399999976158142 |
| sustainable_development_goals[0].display_name | Peace, Justice and strong institutions |
| citation_normalized_percentile |