Minimax experimental design: Bridging the gap between statistical and worst-case approaches to least squares regression Article Swipe
YOU?
·
· 2019
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.1902.00995
In experimental design, we are given a large collection of vectors, each with a hidden response value that we assume derives from an underlying linear model, and we wish to pick a small subset of the vectors such that querying the corresponding responses will lead to a good estimator of the model. A classical approach in statistics is to assume the responses are linear, plus zero-mean i.i.d. Gaussian noise, in which case the goal is to provide an unbiased estimator with smallest mean squared error (A-optimal design). A related approach, more common in computer science, is to assume the responses are arbitrary but fixed, in which case the goal is to estimate the least squares solution using few responses, as quickly as possible, for worst-case inputs. Despite many attempts, characterizing the relationship between these two approaches has proven elusive. We address this by proposing a framework for experimental design where the responses are produced by an arbitrary unknown distribution. We show that there is an efficient randomized experimental design procedure that achieves strong variance bounds for an unbiased estimator using few responses in this general model. Nearly tight bounds for the classical A-optimality criterion, as well as improved bounds for worst-case responses, emerge as special cases of this result. In the process, we develop a new algorithm for a joint sampling distribution called volume sampling, and we propose a new i.i.d. importance sampling method: inverse score sampling. A key novelty of our analysis is in developing new expected error bounds for worst-case regression by controlling the tail behavior of i.i.d. sampling via the jointness of volume sampling. Our result motivates a new minimax-optimality criterion for experimental design which can be viewed as an extension of both A-optimal design and sampling for worst-case regression.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/1902.00995
- https://arxiv.org/pdf/1902.00995
- OA Status
- green
- Cited By
- 8
- References
- 24
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W2914330359
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W2914330359Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.1902.00995Digital Object Identifier
- Title
-
Minimax experimental design: Bridging the gap between statistical and worst-case approaches to least squares regressionWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2019Year of publication
- Publication date
-
2019-02-04Full publication date if available
- Authors
-
Michał Dereziński, Kenneth L. Clarkson, Michael W. Mahoney, Manfred K. WarmuthList of authors in order
- Landing page
-
https://arxiv.org/abs/1902.00995Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/1902.00995Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/1902.00995Direct OA link when available
- Concepts
-
Minimax, Estimator, Mathematics, Mathematical optimization, Minimum-variance unbiased estimator, Bias of an estimator, Computer science, Bridging (networking), Variance (accounting), Algorithm, Applied mathematics, Statistics, Accounting, Computer network, BusinessTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
8Total citation count in OpenAlex
- Citations by year (recent)
-
2024: 3, 2023: 5Per-year citation counts (last 5 years)
- References (count)
-
24Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W2914330359 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.1902.00995 |
| ids.doi | https://doi.org/10.48550/arxiv.1902.00995 |
| ids.mag | 2914330359 |
| ids.openalex | https://openalex.org/W2914330359 |
| fwci | |
| type | preprint |
| title | Minimax experimental design: Bridging the gap between statistical and worst-case approaches to least squares regression |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T12814 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9939000010490417 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Gaussian Processes and Bayesian Inference |
| topics[1].id | https://openalex.org/T10848 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9923999905586243 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1703 |
| topics[1].subfield.display_name | Computational Theory and Mathematics |
| topics[1].display_name | Advanced Multi-Objective Optimization Algorithms |
| topics[2].id | https://openalex.org/T12072 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9919000267982483 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Machine Learning and Algorithms |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C149728462 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7803097367286682 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q751319 |
| concepts[0].display_name | Minimax |
| concepts[1].id | https://openalex.org/C185429906 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6637447476387024 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1130160 |
| concepts[1].display_name | Estimator |
| concepts[2].id | https://openalex.org/C33923547 |
| concepts[2].level | 0 |
| concepts[2].score | 0.5130645036697388 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[2].display_name | Mathematics |
| concepts[3].id | https://openalex.org/C126255220 |
| concepts[3].level | 1 |
| concepts[3].score | 0.47204717993736267 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q141495 |
| concepts[3].display_name | Mathematical optimization |
| concepts[4].id | https://openalex.org/C165646398 |
| concepts[4].level | 3 |
| concepts[4].score | 0.4677591025829315 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q3755281 |
| concepts[4].display_name | Minimum-variance unbiased estimator |
| concepts[5].id | https://openalex.org/C191393472 |
| concepts[5].level | 4 |
| concepts[5].score | 0.459978312253952 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q15222032 |
| concepts[5].display_name | Bias of an estimator |
| concepts[6].id | https://openalex.org/C41008148 |
| concepts[6].level | 0 |
| concepts[6].score | 0.4546045660972595 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[6].display_name | Computer science |
| concepts[7].id | https://openalex.org/C174348530 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4270821213722229 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q188635 |
| concepts[7].display_name | Bridging (networking) |
| concepts[8].id | https://openalex.org/C196083921 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4257675111293793 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q7915758 |
| concepts[8].display_name | Variance (accounting) |
| concepts[9].id | https://openalex.org/C11413529 |
| concepts[9].level | 1 |
| concepts[9].score | 0.3624478876590729 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[9].display_name | Algorithm |
| concepts[10].id | https://openalex.org/C28826006 |
| concepts[10].level | 1 |
| concepts[10].score | 0.35316282510757446 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q33521 |
| concepts[10].display_name | Applied mathematics |
| concepts[11].id | https://openalex.org/C105795698 |
| concepts[11].level | 1 |
| concepts[11].score | 0.33668816089630127 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[11].display_name | Statistics |
| concepts[12].id | https://openalex.org/C121955636 |
| concepts[12].level | 1 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q4116214 |
| concepts[12].display_name | Accounting |
| concepts[13].id | https://openalex.org/C31258907 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q1301371 |
| concepts[13].display_name | Computer network |
| concepts[14].id | https://openalex.org/C144133560 |
| concepts[14].level | 0 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q4830453 |
| concepts[14].display_name | Business |
| keywords[0].id | https://openalex.org/keywords/minimax |
| keywords[0].score | 0.7803097367286682 |
| keywords[0].display_name | Minimax |
| keywords[1].id | https://openalex.org/keywords/estimator |
| keywords[1].score | 0.6637447476387024 |
| keywords[1].display_name | Estimator |
| keywords[2].id | https://openalex.org/keywords/mathematics |
| keywords[2].score | 0.5130645036697388 |
| keywords[2].display_name | Mathematics |
| keywords[3].id | https://openalex.org/keywords/mathematical-optimization |
| keywords[3].score | 0.47204717993736267 |
| keywords[3].display_name | Mathematical optimization |
| keywords[4].id | https://openalex.org/keywords/minimum-variance-unbiased-estimator |
| keywords[4].score | 0.4677591025829315 |
| keywords[4].display_name | Minimum-variance unbiased estimator |
| keywords[5].id | https://openalex.org/keywords/bias-of-an-estimator |
| keywords[5].score | 0.459978312253952 |
| keywords[5].display_name | Bias of an estimator |
| keywords[6].id | https://openalex.org/keywords/computer-science |
| keywords[6].score | 0.4546045660972595 |
| keywords[6].display_name | Computer science |
| keywords[7].id | https://openalex.org/keywords/bridging |
| keywords[7].score | 0.4270821213722229 |
| keywords[7].display_name | Bridging (networking) |
| keywords[8].id | https://openalex.org/keywords/variance |
| keywords[8].score | 0.4257675111293793 |
| keywords[8].display_name | Variance (accounting) |
| keywords[9].id | https://openalex.org/keywords/algorithm |
| keywords[9].score | 0.3624478876590729 |
| keywords[9].display_name | Algorithm |
| keywords[10].id | https://openalex.org/keywords/applied-mathematics |
| keywords[10].score | 0.35316282510757446 |
| keywords[10].display_name | Applied mathematics |
| keywords[11].id | https://openalex.org/keywords/statistics |
| keywords[11].score | 0.33668816089630127 |
| keywords[11].display_name | Statistics |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:1902.00995 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/1902.00995 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/1902.00995 |
| locations[1].id | doi:10.48550/arxiv.1902.00995 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.1902.00995 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5013422880 |
| authorships[0].author.orcid | https://orcid.org/0009-0001-7274-539X |
| authorships[0].author.display_name | Michał Dereziński |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I95457486 |
| authorships[0].affiliations[0].raw_affiliation_string | University of California–Berkeley. |
| authorships[0].institutions[0].id | https://openalex.org/I95457486 |
| authorships[0].institutions[0].ror | https://ror.org/01an7q238 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I95457486 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | University of California, Berkeley |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Michał Dereziński |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | University of California–Berkeley. |
| authorships[1].author.id | https://openalex.org/A5047290568 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Kenneth L. Clarkson |
| authorships[1].affiliations[0].raw_affiliation_string | IBM |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Kenneth L. Clarkson |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | IBM |
| authorships[2].author.id | https://openalex.org/A5033006662 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-7920-4652 |
| authorships[2].author.display_name | Michael W. Mahoney |
| authorships[2].countries | US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I95457486 |
| authorships[2].affiliations[0].raw_affiliation_string | University of California–Berkeley. |
| authorships[2].institutions[0].id | https://openalex.org/I95457486 |
| authorships[2].institutions[0].ror | https://ror.org/01an7q238 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I95457486 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | University of California, Berkeley |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Michael W. Mahoney |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | University of California–Berkeley. |
| authorships[3].author.id | https://openalex.org/A5108549518 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Manfred K. Warmuth |
| authorships[3].countries | US |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I185103710 |
| authorships[3].affiliations[0].raw_affiliation_string | UNIVERSITY OF CALIFORNIA (SANTA CRUZ). |
| authorships[3].institutions[0].id | https://openalex.org/I185103710 |
| authorships[3].institutions[0].ror | https://ror.org/03s65by71 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I185103710 |
| authorships[3].institutions[0].country_code | US |
| authorships[3].institutions[0].display_name | University of California, Santa Cruz |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Manfred K. Warmuth |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | UNIVERSITY OF CALIFORNIA (SANTA CRUZ). |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/1902.00995 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Minimax experimental design: Bridging the gap between statistical and worst-case approaches to least squares regression |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T12814 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9939000010490417 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Gaussian Processes and Bayesian Inference |
| related_works | https://openalex.org/W2349547417, https://openalex.org/W4237435333, https://openalex.org/W4210503132, https://openalex.org/W2999390738, https://openalex.org/W2352602506, https://openalex.org/W3092888124, https://openalex.org/W2093865141, https://openalex.org/W4239491110, https://openalex.org/W2368191880, https://openalex.org/W2910434125 |
| cited_by_count | 8 |
| counts_by_year[0].year | 2024 |
| counts_by_year[0].cited_by_count | 3 |
| counts_by_year[1].year | 2023 |
| counts_by_year[1].cited_by_count | 5 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:1902.00995 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/1902.00995 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/1902.00995 |
| primary_location.id | pmh:oai:arXiv.org:1902.00995 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/1902.00995 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/1902.00995 |
| publication_date | 2019-02-04 |
| publication_year | 2019 |
| referenced_works | https://openalex.org/W2075745801, https://openalex.org/W2965683504, https://openalex.org/W182005662, https://openalex.org/W2962732828, https://openalex.org/W2615055317, https://openalex.org/W2964314596, https://openalex.org/W2150907712, https://openalex.org/W2741825000, https://openalex.org/W2778531042, https://openalex.org/W1519038128, https://openalex.org/W2788976390, https://openalex.org/W2963214110, https://openalex.org/W2963977037, https://openalex.org/W2394933259, https://openalex.org/W3098045837, https://openalex.org/W2157988812, https://openalex.org/W2616345629, https://openalex.org/W2023060931, https://openalex.org/W2807660787, https://openalex.org/W1958800402, https://openalex.org/W1859506250, https://openalex.org/W2963324739, https://openalex.org/W2014018052, https://openalex.org/W2895726581 |
| referenced_works_count | 24 |
| abstract_inverted_index.A | 52, 87, 237 |
| abstract_inverted_index.a | 6, 13, 31, 46, 144, 214, 218, 228, 270 |
| abstract_inverted_index.In | 0, 209 |
| abstract_inverted_index.We | 139, 159 |
| abstract_inverted_index.an | 22, 77, 155, 164, 176, 282 |
| abstract_inverted_index.as | 119, 121, 194, 196, 203, 281 |
| abstract_inverted_index.be | 279 |
| abstract_inverted_index.by | 142, 154, 253 |
| abstract_inverted_index.in | 55, 69, 92, 104, 182, 244 |
| abstract_inverted_index.is | 57, 74, 95, 109, 163, 243 |
| abstract_inverted_index.of | 9, 34, 49, 206, 240, 258, 264, 284 |
| abstract_inverted_index.to | 29, 45, 58, 75, 96, 110 |
| abstract_inverted_index.we | 3, 18, 27, 212, 226 |
| abstract_inverted_index.Our | 267 |
| abstract_inverted_index.and | 26, 225, 288 |
| abstract_inverted_index.are | 4, 62, 100, 152 |
| abstract_inverted_index.but | 102 |
| abstract_inverted_index.can | 278 |
| abstract_inverted_index.few | 117, 180 |
| abstract_inverted_index.for | 123, 146, 175, 189, 199, 217, 250, 274, 290 |
| abstract_inverted_index.has | 136 |
| abstract_inverted_index.key | 238 |
| abstract_inverted_index.new | 215, 229, 246, 271 |
| abstract_inverted_index.our | 241 |
| abstract_inverted_index.the | 35, 40, 50, 60, 72, 98, 107, 112, 130, 150, 190, 210, 255, 262 |
| abstract_inverted_index.two | 134 |
| abstract_inverted_index.via | 261 |
| abstract_inverted_index.both | 285 |
| abstract_inverted_index.case | 71, 106 |
| abstract_inverted_index.each | 11 |
| abstract_inverted_index.from | 21 |
| abstract_inverted_index.goal | 73, 108 |
| abstract_inverted_index.good | 47 |
| abstract_inverted_index.lead | 44 |
| abstract_inverted_index.many | 127 |
| abstract_inverted_index.mean | 82 |
| abstract_inverted_index.more | 90 |
| abstract_inverted_index.pick | 30 |
| abstract_inverted_index.plus | 64 |
| abstract_inverted_index.show | 160 |
| abstract_inverted_index.such | 37 |
| abstract_inverted_index.tail | 256 |
| abstract_inverted_index.that | 17, 38, 161, 170 |
| abstract_inverted_index.this | 141, 183, 207 |
| abstract_inverted_index.well | 195 |
| abstract_inverted_index.will | 43 |
| abstract_inverted_index.wish | 28 |
| abstract_inverted_index.with | 12, 80 |
| abstract_inverted_index.cases | 205 |
| abstract_inverted_index.error | 84, 248 |
| abstract_inverted_index.given | 5 |
| abstract_inverted_index.joint | 219 |
| abstract_inverted_index.large | 7 |
| abstract_inverted_index.least | 113 |
| abstract_inverted_index.score | 235 |
| abstract_inverted_index.small | 32 |
| abstract_inverted_index.there | 162 |
| abstract_inverted_index.these | 133 |
| abstract_inverted_index.tight | 187 |
| abstract_inverted_index.using | 116, 179 |
| abstract_inverted_index.value | 16 |
| abstract_inverted_index.where | 149 |
| abstract_inverted_index.which | 70, 105, 277 |
| abstract_inverted_index.Nearly | 186 |
| abstract_inverted_index.assume | 19, 59, 97 |
| abstract_inverted_index.bounds | 174, 188, 198, 249 |
| abstract_inverted_index.called | 222 |
| abstract_inverted_index.common | 91 |
| abstract_inverted_index.design | 148, 168, 276, 287 |
| abstract_inverted_index.emerge | 202 |
| abstract_inverted_index.fixed, | 103 |
| abstract_inverted_index.hidden | 14 |
| abstract_inverted_index.i.i.d. | 66, 230, 259 |
| abstract_inverted_index.linear | 24 |
| abstract_inverted_index.model, | 25 |
| abstract_inverted_index.model. | 51, 185 |
| abstract_inverted_index.noise, | 68 |
| abstract_inverted_index.proven | 137 |
| abstract_inverted_index.result | 268 |
| abstract_inverted_index.strong | 172 |
| abstract_inverted_index.subset | 33 |
| abstract_inverted_index.viewed | 280 |
| abstract_inverted_index.volume | 223, 265 |
| abstract_inverted_index.Despite | 126 |
| abstract_inverted_index.address | 140 |
| abstract_inverted_index.between | 132 |
| abstract_inverted_index.derives | 20 |
| abstract_inverted_index.design, | 2 |
| abstract_inverted_index.develop | 213 |
| abstract_inverted_index.general | 184 |
| abstract_inverted_index.inputs. | 125 |
| abstract_inverted_index.inverse | 234 |
| abstract_inverted_index.linear, | 63 |
| abstract_inverted_index.method: | 233 |
| abstract_inverted_index.novelty | 239 |
| abstract_inverted_index.propose | 227 |
| abstract_inverted_index.provide | 76 |
| abstract_inverted_index.quickly | 120 |
| abstract_inverted_index.related | 88 |
| abstract_inverted_index.result. | 208 |
| abstract_inverted_index.special | 204 |
| abstract_inverted_index.squared | 83 |
| abstract_inverted_index.squares | 114 |
| abstract_inverted_index.unknown | 157 |
| abstract_inverted_index.vectors | 36 |
| abstract_inverted_index.Gaussian | 67 |
| abstract_inverted_index.achieves | 171 |
| abstract_inverted_index.analysis | 242 |
| abstract_inverted_index.approach | 54 |
| abstract_inverted_index.behavior | 257 |
| abstract_inverted_index.computer | 93 |
| abstract_inverted_index.design). | 86 |
| abstract_inverted_index.elusive. | 138 |
| abstract_inverted_index.estimate | 111 |
| abstract_inverted_index.expected | 247 |
| abstract_inverted_index.improved | 197 |
| abstract_inverted_index.process, | 211 |
| abstract_inverted_index.produced | 153 |
| abstract_inverted_index.querying | 39 |
| abstract_inverted_index.response | 15 |
| abstract_inverted_index.sampling | 220, 232, 260, 289 |
| abstract_inverted_index.science, | 94 |
| abstract_inverted_index.smallest | 81 |
| abstract_inverted_index.solution | 115 |
| abstract_inverted_index.unbiased | 78, 177 |
| abstract_inverted_index.variance | 173 |
| abstract_inverted_index.vectors, | 10 |
| abstract_inverted_index.A-optimal | 286 |
| abstract_inverted_index.algorithm | 216 |
| abstract_inverted_index.approach, | 89 |
| abstract_inverted_index.arbitrary | 101, 156 |
| abstract_inverted_index.attempts, | 128 |
| abstract_inverted_index.classical | 53, 191 |
| abstract_inverted_index.criterion | 273 |
| abstract_inverted_index.efficient | 165 |
| abstract_inverted_index.estimator | 48, 79, 178 |
| abstract_inverted_index.extension | 283 |
| abstract_inverted_index.framework | 145 |
| abstract_inverted_index.jointness | 263 |
| abstract_inverted_index.motivates | 269 |
| abstract_inverted_index.possible, | 122 |
| abstract_inverted_index.procedure | 169 |
| abstract_inverted_index.proposing | 143 |
| abstract_inverted_index.responses | 42, 61, 99, 151, 181 |
| abstract_inverted_index.sampling, | 224 |
| abstract_inverted_index.sampling. | 236, 266 |
| abstract_inverted_index.zero-mean | 65 |
| abstract_inverted_index.(A-optimal | 85 |
| abstract_inverted_index.approaches | 135 |
| abstract_inverted_index.collection | 8 |
| abstract_inverted_index.criterion, | 193 |
| abstract_inverted_index.developing | 245 |
| abstract_inverted_index.importance | 231 |
| abstract_inverted_index.randomized | 166 |
| abstract_inverted_index.regression | 252 |
| abstract_inverted_index.responses, | 118, 201 |
| abstract_inverted_index.statistics | 56 |
| abstract_inverted_index.underlying | 23 |
| abstract_inverted_index.worst-case | 124, 200, 251, 291 |
| abstract_inverted_index.controlling | 254 |
| abstract_inverted_index.regression. | 292 |
| abstract_inverted_index.A-optimality | 192 |
| abstract_inverted_index.distribution | 221 |
| abstract_inverted_index.experimental | 1, 147, 167, 275 |
| abstract_inverted_index.relationship | 131 |
| abstract_inverted_index.corresponding | 41 |
| abstract_inverted_index.distribution. | 158 |
| abstract_inverted_index.characterizing | 129 |
| abstract_inverted_index.minimax-optimality | 272 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile |