Minimum Error Entropy Kalman Filter Article Swipe
YOU?
·
· 2019
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.1904.06617
To date most linear and nonlinear Kalman filters (KFs) have been developed under the Gaussian assumption and the well-known minimum mean square error (MMSE) criterion. In order to improve the robustness with respect to impulsive (or heavy-tailed) non-Gaussian noises, the maximum correntropy criterion (MCC) has recently been used to replace the MMSE criterion in developing several robust Kalman-type filters. To deal with more complicated non-Gaussian noises such as noises from multimodal distributions, in the present paper we develop a new Kalman-type filter, called minimum error entropy Kalman filter (MEE-KF), by using the minimum error entropy (MEE) criterion instead of the MMSE or MCC. Similar to the MCC based KFs, the proposed filter is also an online algorithm with recursive process, in which the propagation equations are used to give prior estimates of the state and covariance matrix, and a fixed-point algorithm is used to update the posterior estimates. In addition, the minimum error entropy extended Kalman filter (MEE-EKF) is also developed for performance improvement in the nonlinear situations. The high accuracy and strong robustness of MEE-KF and MEE-EKF are confirmed by experimental results.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/1904.06617
- https://arxiv.org/pdf/1904.06617
- OA Status
- green
- Cited By
- 1
- References
- 34
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W2939456165
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W2939456165Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.1904.06617Digital Object Identifier
- Title
-
Minimum Error Entropy Kalman FilterWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2019Year of publication
- Publication date
-
2019-04-14Full publication date if available
- Authors
-
Badong Chen, Lujuan Dang, Yuantao Gu, Nanning Zheng, José C. Prı́ncipeList of authors in order
- Landing page
-
https://arxiv.org/abs/1904.06617Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/1904.06617Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/1904.06617Direct OA link when available
- Concepts
-
Kalman filter, Extended Kalman filter, Invariant extended Kalman filter, Minimum mean square error, Mathematics, Robustness (evolution), Control theory (sociology), Ensemble Kalman filter, Covariance, Gaussian, Covariance matrix, Nonlinear system, Alpha beta filter, Fast Kalman filter, Algorithm, Computer science, Statistics, Moving horizon estimation, Artificial intelligence, Physics, Quantum mechanics, Estimator, Gene, Control (management), Biochemistry, ChemistryTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2021: 1Per-year citation counts (last 5 years)
- References (count)
-
34Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W2939456165 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.1904.06617 |
| ids.doi | https://doi.org/10.48550/arxiv.1904.06617 |
| ids.mag | 2939456165 |
| ids.openalex | https://openalex.org/W2939456165 |
| fwci | |
| type | preprint |
| title | Minimum Error Entropy Kalman Filter |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10711 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9976000189781189 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Target Tracking and Data Fusion in Sensor Networks |
| topics[1].id | https://openalex.org/T11233 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9959999918937683 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2206 |
| topics[1].subfield.display_name | Computational Mechanics |
| topics[1].display_name | Advanced Adaptive Filtering Techniques |
| topics[2].id | https://openalex.org/T10320 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9857000112533569 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Neural Networks and Applications |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C157286648 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7201868891716003 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q846780 |
| concepts[0].display_name | Kalman filter |
| concepts[1].id | https://openalex.org/C206833254 |
| concepts[1].level | 3 |
| concepts[1].score | 0.7139211297035217 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q5421817 |
| concepts[1].display_name | Extended Kalman filter |
| concepts[2].id | https://openalex.org/C8639503 |
| concepts[2].level | 4 |
| concepts[2].score | 0.6999408602714539 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q6059511 |
| concepts[2].display_name | Invariant extended Kalman filter |
| concepts[3].id | https://openalex.org/C90652560 |
| concepts[3].level | 3 |
| concepts[3].score | 0.6852678060531616 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11091747 |
| concepts[3].display_name | Minimum mean square error |
| concepts[4].id | https://openalex.org/C33923547 |
| concepts[4].level | 0 |
| concepts[4].score | 0.6370100378990173 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[4].display_name | Mathematics |
| concepts[5].id | https://openalex.org/C63479239 |
| concepts[5].level | 3 |
| concepts[5].score | 0.6271518468856812 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q7353546 |
| concepts[5].display_name | Robustness (evolution) |
| concepts[6].id | https://openalex.org/C47446073 |
| concepts[6].level | 3 |
| concepts[6].score | 0.6119886040687561 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q5165890 |
| concepts[6].display_name | Control theory (sociology) |
| concepts[7].id | https://openalex.org/C79334102 |
| concepts[7].level | 4 |
| concepts[7].score | 0.5689758062362671 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q3072268 |
| concepts[7].display_name | Ensemble Kalman filter |
| concepts[8].id | https://openalex.org/C178650346 |
| concepts[8].level | 2 |
| concepts[8].score | 0.5587196946144104 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q201984 |
| concepts[8].display_name | Covariance |
| concepts[9].id | https://openalex.org/C163716315 |
| concepts[9].level | 2 |
| concepts[9].score | 0.5324785709381104 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q901177 |
| concepts[9].display_name | Gaussian |
| concepts[10].id | https://openalex.org/C185142706 |
| concepts[10].level | 2 |
| concepts[10].score | 0.446023166179657 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q1134404 |
| concepts[10].display_name | Covariance matrix |
| concepts[11].id | https://openalex.org/C158622935 |
| concepts[11].level | 2 |
| concepts[11].score | 0.4437717795372009 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q660848 |
| concepts[11].display_name | Nonlinear system |
| concepts[12].id | https://openalex.org/C11588082 |
| concepts[12].level | 5 |
| concepts[12].score | 0.4324498176574707 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q4735154 |
| concepts[12].display_name | Alpha beta filter |
| concepts[13].id | https://openalex.org/C150679823 |
| concepts[13].level | 4 |
| concepts[13].score | 0.4140566289424896 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q5436946 |
| concepts[13].display_name | Fast Kalman filter |
| concepts[14].id | https://openalex.org/C11413529 |
| concepts[14].level | 1 |
| concepts[14].score | 0.39523380994796753 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[14].display_name | Algorithm |
| concepts[15].id | https://openalex.org/C41008148 |
| concepts[15].level | 0 |
| concepts[15].score | 0.33153387904167175 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[15].display_name | Computer science |
| concepts[16].id | https://openalex.org/C105795698 |
| concepts[16].level | 1 |
| concepts[16].score | 0.21882274746894836 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[16].display_name | Statistics |
| concepts[17].id | https://openalex.org/C50050547 |
| concepts[17].level | 4 |
| concepts[17].score | 0.127157062292099 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q6927137 |
| concepts[17].display_name | Moving horizon estimation |
| concepts[18].id | https://openalex.org/C154945302 |
| concepts[18].level | 1 |
| concepts[18].score | 0.10261952877044678 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[18].display_name | Artificial intelligence |
| concepts[19].id | https://openalex.org/C121332964 |
| concepts[19].level | 0 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[19].display_name | Physics |
| concepts[20].id | https://openalex.org/C62520636 |
| concepts[20].level | 1 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[20].display_name | Quantum mechanics |
| concepts[21].id | https://openalex.org/C185429906 |
| concepts[21].level | 2 |
| concepts[21].score | 0.0 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q1130160 |
| concepts[21].display_name | Estimator |
| concepts[22].id | https://openalex.org/C104317684 |
| concepts[22].level | 2 |
| concepts[22].score | 0.0 |
| concepts[22].wikidata | https://www.wikidata.org/wiki/Q7187 |
| concepts[22].display_name | Gene |
| concepts[23].id | https://openalex.org/C2775924081 |
| concepts[23].level | 2 |
| concepts[23].score | 0.0 |
| concepts[23].wikidata | https://www.wikidata.org/wiki/Q55608371 |
| concepts[23].display_name | Control (management) |
| concepts[24].id | https://openalex.org/C55493867 |
| concepts[24].level | 1 |
| concepts[24].score | 0.0 |
| concepts[24].wikidata | https://www.wikidata.org/wiki/Q7094 |
| concepts[24].display_name | Biochemistry |
| concepts[25].id | https://openalex.org/C185592680 |
| concepts[25].level | 0 |
| concepts[25].score | 0.0 |
| concepts[25].wikidata | https://www.wikidata.org/wiki/Q2329 |
| concepts[25].display_name | Chemistry |
| keywords[0].id | https://openalex.org/keywords/kalman-filter |
| keywords[0].score | 0.7201868891716003 |
| keywords[0].display_name | Kalman filter |
| keywords[1].id | https://openalex.org/keywords/extended-kalman-filter |
| keywords[1].score | 0.7139211297035217 |
| keywords[1].display_name | Extended Kalman filter |
| keywords[2].id | https://openalex.org/keywords/invariant-extended-kalman-filter |
| keywords[2].score | 0.6999408602714539 |
| keywords[2].display_name | Invariant extended Kalman filter |
| keywords[3].id | https://openalex.org/keywords/minimum-mean-square-error |
| keywords[3].score | 0.6852678060531616 |
| keywords[3].display_name | Minimum mean square error |
| keywords[4].id | https://openalex.org/keywords/mathematics |
| keywords[4].score | 0.6370100378990173 |
| keywords[4].display_name | Mathematics |
| keywords[5].id | https://openalex.org/keywords/robustness |
| keywords[5].score | 0.6271518468856812 |
| keywords[5].display_name | Robustness (evolution) |
| keywords[6].id | https://openalex.org/keywords/control-theory |
| keywords[6].score | 0.6119886040687561 |
| keywords[6].display_name | Control theory (sociology) |
| keywords[7].id | https://openalex.org/keywords/ensemble-kalman-filter |
| keywords[7].score | 0.5689758062362671 |
| keywords[7].display_name | Ensemble Kalman filter |
| keywords[8].id | https://openalex.org/keywords/covariance |
| keywords[8].score | 0.5587196946144104 |
| keywords[8].display_name | Covariance |
| keywords[9].id | https://openalex.org/keywords/gaussian |
| keywords[9].score | 0.5324785709381104 |
| keywords[9].display_name | Gaussian |
| keywords[10].id | https://openalex.org/keywords/covariance-matrix |
| keywords[10].score | 0.446023166179657 |
| keywords[10].display_name | Covariance matrix |
| keywords[11].id | https://openalex.org/keywords/nonlinear-system |
| keywords[11].score | 0.4437717795372009 |
| keywords[11].display_name | Nonlinear system |
| keywords[12].id | https://openalex.org/keywords/alpha-beta-filter |
| keywords[12].score | 0.4324498176574707 |
| keywords[12].display_name | Alpha beta filter |
| keywords[13].id | https://openalex.org/keywords/fast-kalman-filter |
| keywords[13].score | 0.4140566289424896 |
| keywords[13].display_name | Fast Kalman filter |
| keywords[14].id | https://openalex.org/keywords/algorithm |
| keywords[14].score | 0.39523380994796753 |
| keywords[14].display_name | Algorithm |
| keywords[15].id | https://openalex.org/keywords/computer-science |
| keywords[15].score | 0.33153387904167175 |
| keywords[15].display_name | Computer science |
| keywords[16].id | https://openalex.org/keywords/statistics |
| keywords[16].score | 0.21882274746894836 |
| keywords[16].display_name | Statistics |
| keywords[17].id | https://openalex.org/keywords/moving-horizon-estimation |
| keywords[17].score | 0.127157062292099 |
| keywords[17].display_name | Moving horizon estimation |
| keywords[18].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[18].score | 0.10261952877044678 |
| keywords[18].display_name | Artificial intelligence |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:1904.06617 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/1904.06617 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/1904.06617 |
| locations[1].id | doi:10.48550/arxiv.1904.06617 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.1904.06617 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5077852542 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-1710-3818 |
| authorships[0].author.display_name | Badong Chen |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Badong Chen |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5080402211 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-8929-8127 |
| authorships[1].author.display_name | Lujuan Dang |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Lujuan Dang |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5100621681 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-8427-1021 |
| authorships[2].author.display_name | Yuantao Gu |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Yuantao Gu |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5047405956 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-1608-8257 |
| authorships[3].author.display_name | Nanning Zheng |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Nanning Zheng |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5019504861 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-3449-3531 |
| authorships[4].author.display_name | José C. Prı́ncipe |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Jose C. Prıncipe |
| authorships[4].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/1904.06617 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Minimum Error Entropy Kalman Filter |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10711 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9976000189781189 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Target Tracking and Data Fusion in Sensor Networks |
| related_works | https://openalex.org/W3190919334, https://openalex.org/W2150837402, https://openalex.org/W4206024512, https://openalex.org/W2263628162, https://openalex.org/W4386026724, https://openalex.org/W4221126147, https://openalex.org/W2491009754, https://openalex.org/W4324121876, https://openalex.org/W2377206439, https://openalex.org/W2273094032 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2021 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:1904.06617 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/1904.06617 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/1904.06617 |
| primary_location.id | pmh:oai:arXiv.org:1904.06617 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/1904.06617 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/1904.06617 |
| publication_date | 2019-04-14 |
| publication_year | 2019 |
| referenced_works | https://openalex.org/W2513248895, https://openalex.org/W3003817990, https://openalex.org/W2561829981, https://openalex.org/W2228180157, https://openalex.org/W2528325063, https://openalex.org/W2806131213, https://openalex.org/W2142823147, https://openalex.org/W2803565927, https://openalex.org/W2026581470, https://openalex.org/W2135160607, https://openalex.org/W2147929628, https://openalex.org/W2148319325, https://openalex.org/W2020934227, https://openalex.org/W2782618922, https://openalex.org/W2047448918, https://openalex.org/W2919403037, https://openalex.org/W2019034316, https://openalex.org/W2139272549, https://openalex.org/W2343911385, https://openalex.org/W2770746583, https://openalex.org/W2604976044, https://openalex.org/W2783393308, https://openalex.org/W1963597876, https://openalex.org/W2144903371, https://openalex.org/W2613028879, https://openalex.org/W2791974556, https://openalex.org/W2110810023, https://openalex.org/W2072320508, https://openalex.org/W3156050587, https://openalex.org/W2145938889, https://openalex.org/W2759183072, https://openalex.org/W2105934661, https://openalex.org/W2885140729, https://openalex.org/W2737188128 |
| referenced_works_count | 34 |
| abstract_inverted_index.a | 78, 138 |
| abstract_inverted_index.In | 25, 148 |
| abstract_inverted_index.To | 0, 59 |
| abstract_inverted_index.an | 114 |
| abstract_inverted_index.as | 67 |
| abstract_inverted_index.by | 89, 180 |
| abstract_inverted_index.in | 53, 72, 120, 164 |
| abstract_inverted_index.is | 112, 141, 158 |
| abstract_inverted_index.of | 98, 131, 174 |
| abstract_inverted_index.or | 101 |
| abstract_inverted_index.to | 27, 33, 48, 104, 127, 143 |
| abstract_inverted_index.we | 76 |
| abstract_inverted_index.(or | 35 |
| abstract_inverted_index.MCC | 106 |
| abstract_inverted_index.The | 168 |
| abstract_inverted_index.and | 4, 16, 134, 137, 171, 176 |
| abstract_inverted_index.are | 125, 178 |
| abstract_inverted_index.for | 161 |
| abstract_inverted_index.has | 44 |
| abstract_inverted_index.new | 79 |
| abstract_inverted_index.the | 13, 17, 29, 39, 50, 73, 91, 99, 105, 109, 122, 132, 145, 150, 165 |
| abstract_inverted_index.KFs, | 108 |
| abstract_inverted_index.MCC. | 102 |
| abstract_inverted_index.MMSE | 51, 100 |
| abstract_inverted_index.also | 113, 159 |
| abstract_inverted_index.been | 10, 46 |
| abstract_inverted_index.date | 1 |
| abstract_inverted_index.deal | 60 |
| abstract_inverted_index.from | 69 |
| abstract_inverted_index.give | 128 |
| abstract_inverted_index.have | 9 |
| abstract_inverted_index.high | 169 |
| abstract_inverted_index.mean | 20 |
| abstract_inverted_index.more | 62 |
| abstract_inverted_index.most | 2 |
| abstract_inverted_index.such | 66 |
| abstract_inverted_index.used | 47, 126, 142 |
| abstract_inverted_index.with | 31, 61, 117 |
| abstract_inverted_index.(KFs) | 8 |
| abstract_inverted_index.(MCC) | 43 |
| abstract_inverted_index.(MEE) | 95 |
| abstract_inverted_index.based | 107 |
| abstract_inverted_index.error | 22, 84, 93, 152 |
| abstract_inverted_index.order | 26 |
| abstract_inverted_index.paper | 75 |
| abstract_inverted_index.prior | 129 |
| abstract_inverted_index.state | 133 |
| abstract_inverted_index.under | 12 |
| abstract_inverted_index.using | 90 |
| abstract_inverted_index.which | 121 |
| abstract_inverted_index.(MMSE) | 23 |
| abstract_inverted_index.Kalman | 6, 86, 155 |
| abstract_inverted_index.MEE-KF | 175 |
| abstract_inverted_index.called | 82 |
| abstract_inverted_index.filter | 87, 111, 156 |
| abstract_inverted_index.linear | 3 |
| abstract_inverted_index.noises | 65, 68 |
| abstract_inverted_index.online | 115 |
| abstract_inverted_index.robust | 56 |
| abstract_inverted_index.square | 21 |
| abstract_inverted_index.strong | 172 |
| abstract_inverted_index.update | 144 |
| abstract_inverted_index.MEE-EKF | 177 |
| abstract_inverted_index.Similar | 103 |
| abstract_inverted_index.develop | 77 |
| abstract_inverted_index.entropy | 85, 94, 153 |
| abstract_inverted_index.filter, | 81 |
| abstract_inverted_index.filters | 7 |
| abstract_inverted_index.improve | 28 |
| abstract_inverted_index.instead | 97 |
| abstract_inverted_index.matrix, | 136 |
| abstract_inverted_index.maximum | 40 |
| abstract_inverted_index.minimum | 19, 83, 92, 151 |
| abstract_inverted_index.noises, | 38 |
| abstract_inverted_index.present | 74 |
| abstract_inverted_index.replace | 49 |
| abstract_inverted_index.respect | 32 |
| abstract_inverted_index.several | 55 |
| abstract_inverted_index.Gaussian | 14 |
| abstract_inverted_index.accuracy | 170 |
| abstract_inverted_index.extended | 154 |
| abstract_inverted_index.filters. | 58 |
| abstract_inverted_index.process, | 119 |
| abstract_inverted_index.proposed | 110 |
| abstract_inverted_index.recently | 45 |
| abstract_inverted_index.results. | 182 |
| abstract_inverted_index.(MEE-EKF) | 157 |
| abstract_inverted_index.(MEE-KF), | 88 |
| abstract_inverted_index.addition, | 149 |
| abstract_inverted_index.algorithm | 116, 140 |
| abstract_inverted_index.confirmed | 179 |
| abstract_inverted_index.criterion | 42, 52, 96 |
| abstract_inverted_index.developed | 11, 160 |
| abstract_inverted_index.equations | 124 |
| abstract_inverted_index.estimates | 130 |
| abstract_inverted_index.impulsive | 34 |
| abstract_inverted_index.nonlinear | 5, 166 |
| abstract_inverted_index.posterior | 146 |
| abstract_inverted_index.recursive | 118 |
| abstract_inverted_index.assumption | 15 |
| abstract_inverted_index.covariance | 135 |
| abstract_inverted_index.criterion. | 24 |
| abstract_inverted_index.developing | 54 |
| abstract_inverted_index.estimates. | 147 |
| abstract_inverted_index.multimodal | 70 |
| abstract_inverted_index.robustness | 30, 173 |
| abstract_inverted_index.well-known | 18 |
| abstract_inverted_index.Kalman-type | 57, 80 |
| abstract_inverted_index.complicated | 63 |
| abstract_inverted_index.correntropy | 41 |
| abstract_inverted_index.fixed-point | 139 |
| abstract_inverted_index.improvement | 163 |
| abstract_inverted_index.performance | 162 |
| abstract_inverted_index.propagation | 123 |
| abstract_inverted_index.situations. | 167 |
| abstract_inverted_index.experimental | 181 |
| abstract_inverted_index.non-Gaussian | 37, 64 |
| abstract_inverted_index.heavy-tailed) | 36 |
| abstract_inverted_index.distributions, | 71 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 5 |
| citation_normalized_percentile |